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Abstract 

 
The gas compressibility factor indicates the gas deviation from ideal gas behavior. Accurate 

values of gas compressibility factor affect the estimation of reservoir fluid properties, the 

initial gas in place, and the natural gas production and transportation process. Gas 

compressibility factor can be estimated in labs; however, this method is expensive and 

time-consuming. Due to these challenges, numerous studies created various empirical 

correlations depending on the results of the equation of state. The Standing and Katz chart 

is regarded as a standard for estimating gas compressibility factor. Many studies proposed 

approaches and correlations to fit this chart, however some did not cover the entire range 

of data, others provided implicit methods taking long time for calculation or faced high 

errors out of the data range. In this study, Support Vector Machine, Radial Basis Function, 

and Functional Network as machine learning approaches were implemented to predict the 

gas compressibility factor, based on 5490 data set of Standing and Katz chart. 70% of the 

data set was implemented in the training process and 30% in the testing process. The data 

set included pseudo-reduced pressure and pseudo-reduced temperature as inputs and Z-

factor as an output. Different training functions were examined for each method for the 

best approach optimization. In addition, machine learning best approach was compared 

with other correlations. The best results in this work were obtained from Radial Basis 

Function with 0.14 average absolute percentage error and 0.99 correlation coefficient. The 

developed machine learning approach performed better than the examined correlations.  

 

 

Introduction 

       The oil and gas reserves that can be recovered can 

be estimated using numerical simulation and material 

balance. These techniques rely on the precision of 

various characteristics of the fluid to recognize the 

thermodynamic reservoirs' performance changes 

related to the gas composition, as well as the pressure 

and temperature of oil and gas reservoirs [1–3]. The 

gas deviation factor (Z-factor), commonly known as 

the gas compressibility factor, is one of the 

fundamental characteristics of fluids. Accurate 

estimation of compressibility factor is very essential, 

most especially when it comes to quick estimation of 

initial gas in place. The difference between the real 

and ideal gas at specific conditions of temperature 

and pressure is known as the gas compressibility 

factor [4]. It can be stated as the ratio of the actual 

volume (Va) to ideal gas volume (Vid): 

 

Z=
Va

Vid
=

Actual volume of gas at specified pressure and temperature  

Ideal volume of gas at standard pressure and temperature 
(1) 

The gas masses typically tend to be insignificant in the 

ideal situation, when the pressure is relatively low, as 

seen in figure 1. This figure was taken from previous 

research [5]. As can be observed from figure 1, the 

optimum gas state is one where the gas 

compressibility factor will have a value of 1. This fact 

can be clarified by the fact that under ideal 

circumstances, molecules of gas are sufficiently 

separated from one another for attraction forces to 

be minimal. Real volume is bigger than what the ideal 

gas law predicts, and the ratio of actual gas volume to 

ideal volume is higher than 1. As the pressure value 

increases, the molecules of the gas get closer to one 

another, allowing interaction of repulsive type to take 

center stage. The real gas law, which can be expressed by 

equation 2, is used to calculate the gas compressibility 

factor in the lab. 

 pV=nZRT (2) 
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Figure 1 Plots of gas compressibility factor. 

 

Where "p" stands for gas pressure, "v" for gas volume, "n" 

for the number of moles, "R" for gas constant (commonly 

named universal constant), and "T" for temperature.  

Equation 3 shows the law of real gases for a defined 

composition of the natural gas, 

P1V1

P2V2
=

nZ1RT1

nZ2RT2
 

(3) 

Equation 4 is showing the rearranged terms of equation 3 

as per the previous assumption: 

Z=
P1V1T2

P2V2T1
 

                                        (4) 

 

The typical PVT cell is used in the lab to calculate the gas 

deviation factor. Z-factor lab measurements are costly and 

time-consuming to perform. Due to these challenges, 

numerous studies created various empirical relationships. 

These relationships were created using the equation of 

state's findings (EOS) to calculate the Z-factor. Standing 

and Katz [5] suggested a gas compressibility factor chart 

based on the law which asserts that at the same pseudo-

reduced pressure (Ppr) and pseudo-reduced temperature 

(Tpr), different gas mixes vary to roughly the same degree 

(nearly similar Z-factor). Pseudo-reduced temperature and 

pressure can be estimated using equation 5 as defined by 

Dranchuk et al [6]. The Z-factor is represented as a 

function of these values for generalization purposes: 

 Tpr=
T

Tpc
   ,    Ppr=

P

Ppc
 (5) 

Where "Tpc" stands for pseudo-reduced temperature, 

"Ppc" stands for pseudo-reduced pressure 

 
 The molar abundance (mole fraction weighted) means the 
critical qualities of the components that make up natural 
gas is what is known as the pseudo-critical properties of 
the natural gas. 

  

Tpc=∑ yiTcin
i=1    , Ppc=∑ yiPcin

i=1    , 

 

(6) 

Where "yi" stands for mole fraction of component i in the 
gas mixture, "Pci" stands for pseudo-critical pressure, "Tci" 
stands for pseudo-critical temperature. 
As a function of specific gravity (air = 1.0), Sutton [7] 
provides equation 7 as follows: 

  

Tpc=169.2+349.5γg-74.0γg
2 , 

 Ppc=756.8-131.07γg-3.6γg
2  

(7) 

Where "γg" stands for Gas specific gravity 

 

The purpose of this research is to add technical 

contributions to gas compressibility factor estimation by 

employing machine learning tools. The research presents 

three machine learning approaches, the Support Victor 

Machine (SVM), Radial Basis Function (RBF), and 

Functional Network (FN)) to calculate the Z-factor based 

on Standing and Katz chart data. These three approaches 

are trained and tested using Standing and Katz charts data 

and evaluated by monitoring two critical statistical 

metrics, average absolute percentage error (AAPE) and 

correlation coefficient (R) between the predicted values 

and actual measurements. In addition, the performance of 

the best approach among these three techniques is 

compared with other common empirical correlations from 

the literature. 

Literature Review 

Z-factor Implicit and Explicit Correlations 

       To determine the exact Z-factor value of a gas sample 
that is containing non-hydrocarbon components; 
laboratory studies should be carried out. However, 
correlations and the equation of state (EOS) have 
historically been more reliable in petroleum engineering 
[5–8], Standing & Katz, 1942 Z-factor chart is considered 
the most popular correlation in petroleum engineering to 
be used. There have been numerous attempts to produce 
these charts by creating implicit or explicit empirical 
correlations that can be utilized in place of the Standing 
and Katz charts method. The following three implicit 
correlations are examples of these Z-factor implicit 
correlations to be used for their accuracy, nearly unit 
regression coefficient correlation, and small maximum 
errors. Hall and Yarborough [9] developed an implicit Z-
factor correlation with 1500 data points taken from 
Standing and Katz's original Z-factor chart and constants 
produced by regression, Hall and Yarborough's correlation 
modifies the hard sphere Carnahan-Starling equation of 
state. Dranchuk and Abou-Kassem (DAK) [6] 
correspondingly modified an implicit Z-factor correlation 
based on Benedict-Webb-Rubin equation of state using 
eleven constants based on regression analysis to 
determine these constants, based on 1500 data points 
that were taken from Katz's and standing charts. 
Dranchuk, Purvis, and Robinson’s Correlation (DPR) 
calculates the Z-factor with minimal processing effort, 
because it only includes eight constants [10]. These 
correlations are useful, but when the systems' 
temperatures are close to the critical temperature, they 
fail to converge (or converge on incorrect pseudo-reduced 
density values). They also require expensive 
computations. These restrictions made the creation of the 
existing explicit linkages necessary [11]. 
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Iterative processes are not necessary for explicit 
correlations. Therefore, unlike implicit correlations, they 
do not suffer the convergence problem. Beggs and Brills 
provided one of the best explicit correlations for 
evaluating the Z-factor [12]. Heidaryan [13], Azizi [14], and 
Sanjari and Lay [15], correlations are more recent 
examples. Brill and Beggs’ compressibility factor [12] can 
be explained by equation 8 as follows: 

Z=A+
1-A

eB
+Cppr

D  
(8) 

A=1.39(Tpr-0.92)
0.5

-0.36Tpr-0.010 

,B=(0.62-0.23Tpr)pr+ (
0.066

Tpr-0.86
-0.037) ppr

2 +
0.32Ppr

2

10E  

C=0.132-0.32log(Tpr), D=10F, E=9(Tpr-1) and 

F=0.3106-0.49Tpr+0.1824TPr  
2  

Heidaryan [13] used regression analysis to create an 
explicit Z-factor correlation with a correlation coefficient 
of 0.99 and total of 22 constants based on the pseudo-
reduced pressure range. Equation 9 expresses Heidaryan's 
explicit Z-factor correlation.   
 

  

Z=ln⁡(

A1+A3 ln(Ppr) +
A5

Tpr
+A7(ln(Ppr))

2
+

A9

Tpr
2 +

A11
Tpr

ln(Ppr)

1+A2 ln(Ppr) +
A4
Tpr

+A6(ln(Ppr))
2
+

A8

Tpr
2 +

A10

Tpr
ln(Ppr)

 

 

(9) 

Where A1 till A11 are contestants and each constant has 
two different values depending on the data range of Ppr 

greater or less than 3 
 
Azizi modified an explicit Z-factor correlation with 20 
constants within a pseudo-reduced temperature range of 
1.1 ≤ Tpr ≤ 2 and a pseudo-reduced pressure range of 0.2 ≤ 
Ppr ≤ 11 [14]. Azizi explicit Z-factor correlation can be 
expressed by equation 10 below.  

  

Z=A+
B+c

D+E
 

(10) 

A= aTpr
2.16+bPpr

1.028+cPpr
1.58Tpr

-2.1+dln(Tpr
-0.5)

B= e+fTpr
2.4+gPpr

1.56+hPpr
0.124Tpr

3.033

C= iln(Tpr
-1.28)+jln(Tpr

1.37)+kln(Ppr)+lln(Ppr
2 )

 +mln(Ppr)ln(Tpr)

D= 1+nTpr
5.55+oPpr

0.68Tpr
0.33

E= pln(Tpr
1.18)+qln(Tpr

2.1)+rln(Ppr)+sln(Ppr
2 )

 +tln(Ppr)ln(Tpr)

 

 
Where a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, and 𝑡 
are constants 
  
Sanjari and Lay 2012 [15] introduced an explicit Z-factor 
correlation using 5844 data points. This correlation was 
developed using 16 constants overall depending on Ppr 
values below and above 3 as expressed in equation 11.  
 

Z=1+A1Ppr+A2Ppr
2 +

A3Ppr
A4

Tpr
A5

+
A6Ppr

(A4+1)

Tpr
7 +

A8Ppr
(A4+2)

Tpr
(A7+1)

 (11) 

Where A1 till A8 are constants. 
 

Lateef developed an explicit z-factor correlation (Equation 
12) as a multi-stage correlation based on Hall and 
Yarborough’s implicit one within the range 1.15 ≤Tpr ≤ 3 
and 6 ≤ Ppr ≤ 15 with 19 constants using non-linear 
regression method [16]. 
 

 Z=
DPpr(1+y+y2-y3)

(DPpr+Ey2-Fyg)(1-y)3
 

 

(12) 

Y=
DPpr

1+A2

C
-

A2B

C3

 

t=
1

Tpr 
 

A=a1tea2(1-t)2
Ppr     ; 

B=a3t+a4t2+a5t6Ppr
6 ; 

C=a9+a8tPpr+a7t2Ppr
2 +a6t3Pr3; 

D=a10tea11(1-t)2
; 

E=a12t+a13t2+a14t3; 
F=a15t+a16t2+a17t3; 
G=a18+a19t; 
 

Where a1 till a19 are constants 

The applications of machine learning methods for 

petroleum big data showed increasing growth over years 

for solving technical issues and providing optimum 

solutions for the operations for cost reduction for 

different industry segments such as drilling production 

and reservoir engineering [17–24]. 

Machine Learning Methods 

       Support Vector Machine (SVM) is an efficient strong 

method for classification. It uses one or more vectors of 

features to predict labels after creating a decision 

boundary between two classes [25]. The decision 

boundary or the hyperplane, between the two classes, has 

an orientation that makes it the farthest from the closest 

data points of the two classes. The SVM approach is built 

by training on the given data set to determine weights and 

biases to build the hyperplane that separates the data 

with the maximum margin. In the early stage, SVM was 

just used to construct a linear classification [26]. The 

kernel method is a different style of using the SVM which, 

allows us to approach higher dimensional complex 

approachs [27]. A kernel function results in higher 

dimensional space for the non-linear problem by adding 

additional dimensions to the raw data. Calculations are 

done faster by Kernel function instead of doing 

computations in high dimensional space. The Radial basis 

function (RBF) structure is simple, but the application is 

similar to the Multilayer Perceptron (MLP) which is a static 

structure of the neural network which does not present 

feedback loops but the learning of which is supervised. 

The network structure for the RBF includes only three 

layers, which is simplifying the training process [28]. RBF 

networks is very efficient in dealing with extremely noisy 

data [29]. Non-linear transformation function is applied to 

the weighting vector of the hidden layer. This type of 

networks is used in the prediction of multi-variable 

continuous functions. The cost function immunization and 

oscillation control are used to determine the best solution 

[30]. There are three main components of functional 



Journal of Petroleum and Mining Engineering 25(1)2023                                                                                                        DOI:10.21608/JPME.2023.177642.1145 
 

Page|91 

neural networks (FNs) those three components or three 

layers or the input and output layers containing neurons 

linked to the neurons existing on one or more multiple 

hidden layers [31,32]. They predicted the value would be 

the products of weights from the neurons, used to predict 

the ultimate value in the forward propagation. It takes the 

opposite direction with backpropagation as the output is 

used to determine the most correct wheats to get the 

optimum results [33–35]. Scalar outputs would be 

predicted by the functional neurons from the first hidden 

layer which is considered as a functional layer. Regular 

neural network layers are subsequent to the first 

functional hidden layer and for that, the forward 

propagation calculation would be straightforward [35–

38]. 

Methodology 

       This study followed a straight successful path utilizing 

three different artificial intelligence techniques to predict 

an important property for the petroleum industry. The 

chosen AI techniques were used before in other studies 

related to the petroleum industry and have proven to 

provide efficient results. Work started by reviewing and 

preparing data for the training process using artificial 

intelligence techniques. 

Data Description 

       In this study, 5490 measurements for the gas Z-factor, 

Tpr, and Ppr were used to create the Z-factor (Generalized 

chart) for Standing and Katz [5]. Table 1 displays data 

statistics for every parameter. Tpr, as we can see, lies 

between 3 and 1.05, whereas Ppr has a maximum of 15 and 

a minimum of 0.2. The Z-factor lies between 1.753 and 

0.2992. The intricate link between the Z-factor, Ppr, and Tpr 

will undoubtedly benefit from the use of AI approaches. 

Figure 2 displays the data distribution and repetition for 

the inputs (Ppr and Tpr) and the Z-facto as predicted 

parameter. 

Table 1 Data statistical analysis 

Statistical 
Parameter 

Pseudo-
Reduced 
Pressure 

Pseudo-
Reduced 

Temperature 

Z-factor 

Mean 7.6 1.74 1.05 

Median 7.6 1.55 1.03 

Mode 0.2 1.05 1 

Standard 
Deviation 

4.29 0.57 0.25 

Sample 
Variance 

18.38 0.33 0.06 

Kurtosis -1.2 -0.53 -0.06 

Skewness 2.5E-15 0.79 -0.07 

Range 14.8 1.95 1.45 

Minimum 0.2 1.05 0.3 

Maximum 15 3 1.75 

Sum 45144 10320.75 6252.1 

Count 5940 5940 5940 

 

 

Figure 2 Histogram plots for Tpr, Ppr, and Z-factor 

Model Development 

       This work is done by different machine learning tools 

that can be trained and tested to see the strength of these 

approaches to build an accurate approach which may 

determine the Z-factor from only two parameters which 

are, pseudo-reduced temperature and pseudo-reduced 

pressure included in standing and Katz charts data. The 

approach yielded trustworthy approachs based on 

artificial intelligence. The Support Victor Machine 

technique has been applied with the 5490 data sets 

randomized and separated into the training set and testing 

set considering that both sets should cover the full range. 

It was important to assure that the training and testing 

sets both must be covering the full range to assure the 

quality of the approachs. Even the validation set is 

determined following the same rule regarding the range of 

the data. The training testing ratio is determined to allow 

the maximum number of data enough to build the 

approach in the training and validation phases. At the 

same time, it was important to assure the quality of the 

approach and prove its generalization by enough 

percentage of testing data points. The 70% training set to 

30% testing set was believed to give the best results and 

prove the validity of the approach. The data percentage 

was fixed for all the algorithms runs.  

Support vector machine model development 

       Artificial intelligence techniques use a group of 

mathematical functions which can be defined as the 

kernel. The kernel is a way of computing the dot product 

of two vectors x and y in some (very high dimensional) 

feature space, which is why kernel functions are 

sometimes called "generalized dot product". The kernel 

function is to take data as input and transform it into the 

required form. The kernel functions return the inner 

product between two points in a suitable feature space. 

Thus, by defining a notion of similarity, with a little 

computational cost even in very high-dimensional spaces. 

Different SVM algorithms use different types of kernel 

functions. These functions can be different types. For 

example, linear, nonlinear, and polynomial. The code used 

for the SVM was run several times changing the kernel 

function and checking the accuracy of the results to get 

the optimum function. Other parameters were optimized 

by trying different inputs and evaluating the accuracy of 

the resulted Z-factor value against actual values. The main 

other values that can affect the SVM results are 

regularization strength (Lambda), the C parameter which 

is the penalty parameter of the error term, and the value 
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of epsilon (ϵ) which defines a margin of tolerance where 

no penalty is given to errors. The regularization strength 

(Lambda) was believed not to have a significant effect on 

the accuracy of the results in this study. Lambda was kept 

at the value of 0.0001 where the C parameter had a range 

of 0.045 to 4500 and the epsilon value was changed 

throughout several trials from 0.01 to 0.5.  

Radial basis function networks model development 

       RBF mainly consists of two layers, the hidden layer, 

and the linear output layer. The design method of the RBF 

network can be one of two types which are newrb and 

newrbe. The transfer function of the RBF is radial basis 

transfer function (Radbas.). Euclidean distance weight 

function (dist) is used to calculate its weighted inputs and 

Product net input function (netprod) is used to calculate 

the net input. The linear transfer function (purelin) is used 

in the second layer and calculated. In the second layer, the 

weighted input is determined with dot prod, where sum 

net input function (netsum) is used to determine net 

inputs with. The first and second layers have biases. A two-

layer network with 0% error on training vectors may be 

produced using newrbe, which also iteratively builds radial 

basis networks, one neuron at a time. Similar to newrbe, 

newrb uses a similar design approach. The distinction is 

that newrb develops neurons one by one. A radbas neuron 

is created at each iteration using the input vector that 

lowers the network error the best. The new network's 

error is examined, and if it's low enough, newrb is 

completed. If not, the next neuron is inserted. Until the 

error objective is attained, or the maximum number of 

neurons is achieved, this process is repeated. The number 

of neurons with newrb was set to change from 5 to 50 to 

determine the optimum architecture for the net. The 

spread constant is another value that affects the results of 

the RBF approach. In this study, different values ranging 

from 0.01 to 8 were set and results were evaluated to get 

the optimum spread constant value.  

Functional networks model development 

       FNs are considered a unique generalization of a NN, 

which uses data to predict the functions of neurons and 

domain knowledge to design the network's structure. 

Functional networks' ability to handle functional 

restrictions based on functional characteristics that could 

be aware in the approach is a key property (e.g., 

associativity, distributivity, etc.). The components of a 

functional networks (FNs) are as follows: the input data is 

stored in one layer of input storage units. The output data 

is stored in one layer of output storage units. A set of input 

values from the preceding layer (of intermediate or input 

units) are evaluated by one or more layers of processing 

units, which then deliver a set of output values to the 

following layer (of intermediate or output units). Each 

neuron hence has a corresponding neuron function, which 

may be multivariate and contain an equal number of 

arguments and inputs. A functional cell is a unit 

(univariate) of a neuronal function. Oval shapes with the 

name of the associated function within are used to depict 

neurons. Nothing, a single layer, or many layers of units 

that hold the intermediate information generated by 

neuron units. The output of the processing units may be 

forced to coincide owing to these layers. a group of direct 

connections that join units in the input or intermediate 

layers with neurons, and neurons with intermediate or 

output units. When choosing a FN, there are two aspects 

to take into account: first, use the functions' family; 

second, choose the functions' items from the family [39].  

Different functions 'family were used in this study such as 

functional network forward–backward (FNFBM), 

functional network backward-forward (FNBFM), FNFSM 

Functional network forward-selection method, FNESM 

Functional network exhaustive-search method, FNBEM 

Functional network backward-elimination method. 

Results  

       The machine learning approach for developing the 

approaches is mainly evaluated by determining the errors 

between the actual and predicted values for the Z factor 

using two statistical metrics named the correlation 

coefficient (R) and the average absolute percentage error 

(AAPE). The SVM approach code was run with different 

algorithms using different types of kernel functions such 

as Gaussian, Polynomial. The parameter C (penalty 

parameter of the error term), Lambda (regularization 

strength), and epsilon (defines a margin of tolerance 

where no penalty is given to errors) were changed for 

every run to reach the best result. The best result was 

achieved with Kernel function 'Gaussian" with C=450, 

Lambda= 0.000, and epsilon= 0.01. The training and 

testing data showed 0.58 and 0.6 for the AAPE respectively 

and 0.99 R for both as shown in figure 3.   

 
Figure 3 Results cross plots for training (a) and testing 

processes (b) for Support Vector Machine approach. 

 

The AAPE and R for the whole data were 0.59 and 0.99 

respectively as mentioned in figure 4.   

 
Figure 4 Z- Factor chart for Support Vector Machine 

approach. 
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RBF approaches, newrbe and newrb codes were tested to 

predict the Z-factor using the same data set for the 

training and the testing data. Newrbe approach showed 

better results than newrb with 0.99 for R and 0.14 for 

AAPE. 0.13 and 0.16 AAPE were obtained for both the 

training and testing data respectively, while R is 0.99 for 

both as shown in figures 5 and 6. 

 
Figure 5 Results cross plots for training (a) and testing 

processes (b) for Radial Basis Function approach. 

 
Figure 6 Z- Factor chart for Radial Basis Function approach. 

 

Table 2 and figure 7 summarize the best net main 

parameters of the best approach obtained from the RBF 

ML technique.  

Table 2 The developed Radial Basis Function 

Radial Basis Function Structure Ranges 

Input Features 2 

Output 1 (Z factor) 

Hidden layer 1 

Transfer function for hidden-layer Radial Basis 

Neurons Number 4158 

Transfer function for outer layer Purline 

Training to Testing 70 to 30 

 

 
Figure 7 Schematic of the structure of the best RBF net. 

 

FNs different ML techniques were tested with the same 

data set giving high AAPE compared with SVM and RBF. It 

can be seen from figure 8 that regression between the 

estimated and actual data for both the training and testing 

have 2.5 and 2.8 AAPE respectively. The AAPE for the 

whole data set is 2.6 and shows 0.99 for R as shown in 

Figure 9. 

 
Figure 8 Results cross plots for training (a) and testing 

processes (b) for Functional Network approach. 

 

 
Figure 9 Z- Factor chart for Functional Network approach. 

 

 After comparing the three approaches to predict Z-factor 

using Standing and Katz charts data, RBF showed better 

results than SVM and FN. In the following section, the 

results of the ML techniques will be compared with 

different published correlations from the literature to 

predict Z-factor using Standing and Katz charts data.  

Discussion 

       Scientists worked on this topic before as it is important 

to eliminate the need for the manual usage of Standing & 

Katz charts. This study is outperforming all the previous 

research in terms of accuracy and application range. In this 

section of the study, a detailed explanation and 

comparison with the most accurate Z-factor correlations 

from previous work, would emphasize the advantage of 

this research. 

Lateef’s explicit correlation was proposed to calculate the 

Z-factor [16]. Lateef’s correlation was modified from the 

Hall and Yarborough’s implicit correlation [9]. this 

correlation was proposed to be valid in the range of 1.15 

≤Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15 with 0.44 AAPE and 0.99 R as 

shown in figure 10. Lateef’s correlation compared with 

other explicit correlations such Sanjari and lay [15], 

Heidaryan et al [13], and Azizi [14] shows better 

performance to predict the Z-factor compared with the 

mentioned correlations.  
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Figure 10 the S-K chart predicted by Lateef correlation. 

 

The best ML approach (RBF) from this research was 

compared to Lateef and other explicit correlations within 

the same data range (1.15 ≤Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15) to 

predict the Z-factor. Table 3 summarizes the results 

obtained by Lateef’s correlation and what has been 

conducted in this research using RBF approach. RBF 

approach from this study predicting Z-factor is much 

better than the mentioned explicit correlations, resulting 

0.11 AAPE and 0.99 R for the data range used in Lateef’s 

correlation.  

Table 3 Comparison of the explicit correlations with the 

best ML approach (RBF) 

Correlation 
AAPE 
(%) 

R MAXAE MAXAAPE 

     

Sanjari and 
Lay (2012) 

3.7 0.95 0.77 45.57 

Heidaryan 
et al. (2010) 

0.49 0.99 0.02 3.7 

Azizi et al. 
(2010) 

13.5 0.87 0.35 60 

Lateef 
correlation 

0.44 0.99 0.03 5.99 

The 
developed 
RBF model 

0.11 0.99 0.02 2 

 

The above comparison proved the advantage of the 

current study over literature work in terms of accuracy. 

From another side, this study is outperforming the 

previous work in terms of range. The range of Tpr used to 

develop Lateef’s correlation is not the same range for 

Standing & Katz charts. All the AI approachs developed in 

this research used the full range same as the Standing & 

Katz charts’ Ppr and Tpr ranges. 

Conclusions 

       Results from the different machine learning 

techniques (Support vector machine (SVM), Radial basis 

function (RBF), and Functional network (FN)) showed the  

charts data range (1.05 ≤Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15). RBF 

(newrbe) machine learning technique results performance 

is better than SVM and FN giving 0.99 for the correlation 

coefficient and 0.14 for the average absolute percentage 

error. The approach inputs are the pseudo-reduced 

temperature (𝑇𝑝𝑟) and pseudo-reduced pressure (𝑃𝑝𝑟) and 

Z-factor as the output. The developed RBF approach was 

compared with the other Z-factor explicit correlations and 

outperformed all previous work. The accuracy of the 

results of the machine learning technique (RBF) is 0.11 for 

the average absolute percentage error and 0.99 for the 

correlation coefficient. This performance accuracy 

exceeds the one by Lateef and the other empirical 

correlation within the range of (1.15 ≤Tpr ≤ 3 and 0.2 ≤ Ppr 

≤ 15). 
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