Different Machine Learning Approaches to Predict Gas Deviation Factor (Z-factor)

Elsayed, M., A. *1,2 Alsabaa, A.1, Salem, A. M.2
1 Department of Petroleum Engineering, College of Petroleum Engineering & Geosciences King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
2 Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering Suez University, Suez, Egypt
*Corresponding author e-mail: 2018mattia@gmail.com

Abstract

The gas compressibility factor indicates the gas deviation from ideal gas behavior. Accurate values of gas compressibility factor affect the estimation of reservoir fluid properties, the initial gas in place, and the natural gas production and transportation process. Gas compressibility factor can be estimated in labs; however, this method is expensive and time-consuming. Due to these challenges, numerous studies created various empirical correlations depending on the results of the equation of state. The Standing and Katz chart is regarded as a standard for estimating gas compressibility factor. Many studies proposed approaches and correlations to fit this chart, however some did not cover the entire range of data, others provided implicit methods taking long time for calculation or faced high errors out of the data range. In this study, Support Vector Machine, Radial Basis Function, and Functional Network as machine learning approaches were implemented to predict the gas compressibility factor, based on 5490 data set of Standing and Katz chart. 70% of the data set was implemented in the training process and 30% in the testing process. The data set included pseudo-reduced pressure and pseudo-reduced temperature as inputs and Z-factor as an output. Different training functions were examined for each method for the best approach optimization. In addition, machine learning best approach was compared with other correlations. The best results in this work were obtained from Radial Basis Function with 0.14 average absolute percentage error and 0.99 correlation coefficient. The developed machine learning approach performed better than the examined correlations.

Introduction

The oil and gas reserves that can be recovered can be estimated using numerical simulation and material balance. These techniques rely on the precision of various characteristics of the fluid to recognize the thermodynamic reservoirs’ performance changes related to the gas composition, as well as the pressure and temperature of oil and gas reservoirs [1–3]. The gas deviation factor (Z-factor), commonly known as the gas compressibility factor, is one of the fundamental characteristics of fluids. Accurate estimation of compressibility factor is very essential, most especially when it comes to quick estimation of initial gas in place. The difference between the real and ideal gas at specific conditions of temperature and pressure is known as the gas compressibility factor [4]. It can be stated as the ratio of the actual volume \(V_a \) to ideal gas volume \(V_{id} \):

\[
Z = \frac{V_a}{V_{id}} = \frac{\text{Actual volume of gas at specified pressure and temperature}}{\text{Ideal volume of gas at standard pressure and temperature}}
\]

(1)

The gas masses typically tend to be insignificant in the ideal situation, when the pressure is relatively low, as seen in figure 1. This figure was taken from previous research [5]. As can be observed from figure 1, the optimum gas state is one where the gas compressibility factor will have a value of 1. This fact can be clarified by the fact that under ideal circumstances, molecules of gas are sufficiently separated from one another for attraction forces to be minimal. Real volume is bigger than what the ideal gas law predicts, and the ratio of actual gas volume to ideal volume is higher than 1. As the pressure value increases, the molecules of the gas get closer to one another, allowing interaction of repulsive type to take center stage. The real gas law, which can be expressed by equation 2, is used to calculate the gas compressibility factor in the lab.

\[
pV = nZRT
\]

(2)
Where "p" stands for gas pressure, "v" for gas volume, "n" for the number of moles, "R" for gas constant (commonly named universal constant), and "T" for temperature.

Equation 3 shows the law of real gases for a defined composition of the natural gas,

\[
P_1V_1 \over nZ_1RT_1 = P_2V_2 \over nZ_2RT_2
\] (3)

Equation 4 is showing the rearranged terms of equation 3 as per the previous assumption:

\[
Z = P_1V_1T_2 \over P_2V_2T_1
\] (4)

The typical PVT cell is used in the lab to calculate the gas deviation factor. Z-factor lab measurements are costly and time-consuming to perform. Due to these challenges, numerous studies created various empirical relationships. These relationships were created using the equation of state’s findings (EOS) to calculate the Z-factor. Standing and Katz [5] suggested a gas compressibility factor chart based on the law which asserts that at the same pseudo-reduced pressure (\(P_r\)) and pseudo-reduced temperature (\(T_r\)), different gas mixes vary to roughly the same degree (nearly similar Z-factor). Pseudo-reduced temperature and pressure can be estimated using equation 5 as defined by Dranchuk et al [6]. The Z-factor is represented as a function of these values for generalization purposes:

\[
T_r = T_{pr} \over T_{rw} \quad \text{and} \quad P_r = P_{pr} \over P_{pc}
\] (5)

Where "\(T_{pc}\)" stands for pseudo-reduced temperature, "\(P_{pc}\)" stands for pseudo-reduced pressure

The molar abundance (mole fraction weighted) means the critical qualities of the components that make up natural gas is what is known as the pseudo-critical properties of the natural gas.

\[
T_{pc} = \sum_{i=1}^{n} \gamma_iT_{ci} \quad \text{and} \quad P_{pc} = \sum_{i=1}^{n} \gamma_iP_{ci}
\] (6)

Where "\(\gamma_i\)" stands for mole fraction of component i in the gas mixture, "\(P_{ci}\)" stands for pseudo-critical pressure, "\(T_{ci}\)" stands for pseudo-critical temperature.

As a function of specific gravity (air = 1.0), Sutton [7] provides equation 7 as follows:

\[
T_{pc} = 169.2 + 349.5 \gamma_g - 74.0 \gamma_g^2, \quad P_{pc} = 756.8 - 131.07 \gamma_g - 3.6 \gamma_g^2
\] (7)

Where "\(\gamma_g\)" stands for Gas specific gravity

The purpose of this research is to add technical contributions to gas compressibility factor estimation by employing machine learning tools. The research presents three machine learning approaches, the Support Vector Machine (SVM), Radial Basis Function (RBF), and Functional Network (FN)) to calculate the Z-factor based on Standing and Katz chart data. These three approaches are trained and tested using Standing and Katz charts data and evaluated by monitoring two critical statistical metrics, average absolute percentage error (AAPE) and correlation coefficient (R) between the predicted values and actual measurements. In addition, the performance of the best approach among these three techniques is compared with other common empirical correlations from the literature.

Literature Review

Z-factor Implicit and Explicit Correlations

To determine the exact Z-factor value of a gas sample that is containing non-hydrocarbon components; laboratory studies should be carried out. However, correlations and the equation of state (EOS) have historically been more reliable in petroleum engineering [5–8]. Standing & Katz, 1942 Z-factor chart is considered the most popular correlation in petroleum engineering to be used. There have been numerous attempts to produce these charts by creating implicit or explicit empirical correlations that can be utilized in place of the Standing and Katz charts method. The following three implicit correlations are examples of these Z-factor implicit correlations to be used for their accuracy, nearly unit regression coefficient correlation, and small maximum errors. Hall and Yarborough [9] developed an implicit Z-factor correlation with 1500 data points taken from Standing and Katz’s original Z-factor chart and constants produced by regression, Hall and Yarborough’s correlation modifies the hard sphere Carnahan-Starling equation of state. Dranchuk and Abou-Kassem (DAK) [6] correspondingly modified an implicit Z-factor correlation based on Benedict-Webb-Rubin equation of state using eleven constants based on regression analysis to determine these constants, based on 1500 data points that were taken from Katz’s and standing charts. Dranchuk, Purvis, and Robinson’s Correlation (DPR) calculates the Z-factor with minimal processing effort, because it only includes eight constants [10]. These correlations are useful, but when the systems’ temperatures are close to the critical temperature, they fail to converge (or converge on incorrect pseudo-reduced density values). They also require expensive computations. These restrictions made the creation of the existing explicit linkages necessary [11].
Iterative processes are not necessary for explicit correlations. Therefore, unlike implicit correlations, they do not suffer the convergence problem. Beggs and Brills provided one of the best explicit correlations for evaluating the Z-factor [12]. Heidaryan [13], Azizi [14], and Sanjari and Lay [15], correlations are more recent examples. Brill and Beggs’ compressibility factor [12] can be expressed by equation 8 as follows:

$$Z = A + \frac{B}{T_p} + Cp_p^D$$

(8)

Where A, B, and C are constants.

Azizi modified an explicit Z-factor correlation with 20 constants within a pseudo-reduced temperature range of $1.1 \leq T_p \leq 2$ and a pseudo-reduced pressure range of $0.2 \leq P_p \leq 11$ [14]. Azizi explicit Z-factor correlation can be expressed by equation 10 below.

$$Z = A + \frac{B}{T_p} + C$$

Where A, B, and C are constants.

Heidaryan [13] used regression analysis to create an explicit Z-factor correlation with a correlation coefficient of 0.99 and total of 22 constants based on the pseudo-reduced pressure range. Equation 9 expresses Heidaryan’s explicit Z-factor correlation.

$$Z = \ln\left(1 + A_1 \ln(P_p) + \frac{A_2 + A_3 \ln(P_p)}{T_p} + \frac{A_4 + A_5 \ln(P_p)}{T_p^2} + \frac{A_6 + A_7 \ln(P_p)}{T_p^3}\right)$$

(9)

Where A_1 till A_7 are contestants and each constant has two different values depending on the data range of P_p greater or less than 3.

Heidaryan modified an explicit Z-factor correlation with 20 constants within a pseudo-reduced temperature range of $1.1 \leq T_p \leq 2$ and a pseudo-reduced pressure range of $0.2 \leq P_p \leq 11$ [14]. Azizi explicit Z-factor correlation can be expressed by equation 10 below.

$$Z = A + \frac{B}{T_p} + C$$

(10)

Where A, B, and C are constants.

Sanjari and Lay 2012 [15] introduced an explicit Z-factor correlation using 5844 data points. This correlation was developed using 16 constants overall depending on P_p values below and above 3 as expressed in equation 11.

$$Z = 1 + A_1 P_p + A_2 P_p^2 + \frac{A_3 P_p^{(A_4 + 1)}}{T_p} + \frac{A_5 P_p^{(A_6 + 1)}}{T_p^2} + \frac{A_7 P_p^{(A_8 + 2)}}{T_p^3}$$

(11)

Where A_1 till A_7 are constants.

Lateef developed an explicit z-factor correlation (Equation 12) as a multi-stage correlation based on Hall and Yarborough’s implicit one within the range $1.15 \leq T_p \leq 3$ and $6 \leq P_p \leq 15$ with 19 constants using non-linear regression method [16].

$$Z = \frac{DP_p}{(DP_p - 4.7 + 5.2)(1 - t)}$$

(12)

Where a_1 till a_9 are constants.

The applications of machine learning methods for petroleum big data showed increasing growth over years for solving technical issues and providing optimum solutions for the operations for cost reduction for different industry segments such as drilling production and reservoir engineering [17–24].

Machine Learning Methods

Support Vector Machine (SVM) is an efficient strong method for classification. It uses one or more vectors of features to predict labels after creating a decision boundary between two classes [25]. The decision boundary of the hyperplane, between the two classes, has an orientation that makes it the farthest from the closest data points of the two classes. The SVM approach is built by training on the given data set to determine weights and biases to build the hyperplane that separates the data with the maximum margin. In the early stage, SVM was just used to construct a linear classification [26]. The kernel method is a different style of using the SVM which, allows us to approach higher dimensional complex approaches [27]. A kernel function results in higher dimensional space for the non-linear problem by adding additional dimensions to the raw data. Calculations are done faster by Kernel function instead of doing computations in high dimensional space. The Radial basis function (RBF) structure is simple, but the application is similar to the Multilayer Perceptron (MLP) which is a static structure of the neural network which does not present feedback loops but the learning of which is supervised. The network structure for the RBF includes only three layers, which is simplifying the training process [28]. RBF networks is very efficient in dealing with extremely noisy data [29]. Non-linear transformation function is applied to the weighting vector of the hidden layer. This type of networks is used in the prediction of multi-variable continuous functions. The cost function immunization and oscillation control are used to determine the best solution [30]. There are three main components of functional...
neural networks (FNs) those three components or three layers or the input and output layers containing neurons linked to the neurons existing on one or more multiple hidden layers [31,32]. They predicted the value would be the products of weights from the neurons, used to predict the ultimate value in the forward propagation. It takes the opposite direction with backpropagation as the output is used to determine the most correct wheats to get the optimum results [33–35]. Scalar outputs would be predicted by the functional neurons from the first hidden layer which is considered as a functional layer. Regular neural network layers are subsequent to the first functional hidden layer and for that, the forward propagation calculation would be straightforward [35–38].

Methodology

This study followed a straight successful path utilizing three different artificial intelligence techniques to predict an important property for the petroleum industry. The chosen AI techniques were used before in other studies related to the petroleum industry and have proven to provide efficient results. Work started by reviewing and preparing data for the training process using artificial intelligence techniques.

Data Description

In this study, 5490 measurements for the gas Z-factor, T_{pr}, and P_{pr} were used to create the Z-factor (Generalized chart) for Standing and Katz [5]. Table 1 displays data statistics for every parameter. T_{pr}, as we can see, lies between 3 and 1.05, whereas P_{pr} has a maximum of 15 and a minimum of 0.2. The Z-factor lies between 1.753 and 0.2992. The intricate link between the Z-factor, P_{pr}, and T_{pr} will undoubtedly benefit from the use of AI approaches. Figure 2 displays the data distribution and repetition for the inputs (P_{pr} and T_{pr}) and the Z-facto as predicted parameter.

![Figure 2 Histogram plots for T_{pr}, P_{pr}, and Z-factor](image)

Model Development

This work is done by different machine learning tools that can be trained and tested to see the strength of these approaches to build an accurate approach which may determine the Z-factor from only two parameters which are, pseudo-reduced temperature and pseudo-reduced pressure included in standing and Katz charts data. The approach yielded trustworthy approaches based on artificial intelligence. The Support Vector Machine technique has been applied with the 5490 data sets randomized and separated into the training set and testing set considering that both sets should cover the full range. It was important to assure that the training and testing sets both must be covering the full range to assure the quality of the approaches. Even the validation set is determined following the same rule regarding the range of the data. The training testing ratio is determined to allow the maximum number of data enough to build the approach in the training and validation phases. At the same time, it was important to assure the quality of the approach and prove its generalization by enough percentage of testing data points. The 70% training set to 30% testing set was believed to give the best results and prove the validity of the approach. The data percentage was fixed for all the algorithms runs.

Support vector machine model development

Artificial intelligence techniques use a group of mathematical functions which can be defined as the kernel. The kernel is a way of computing the dot product of two vectors x and y in some (very high dimensional) feature space, which is why kernel functions are sometimes called "generalized dot product". The kernel function is to take data as input and transform it into the required form. The kernel functions return the inner product between two points in a suitable feature space. Thus, by defining a notion of similarity, with a little computational cost even in very high-dimensional spaces. Different SVM algorithms use different types of kernel functions. These functions can be different types. For example, linear, nonlinear, and polynomial. The code used for the SVM was run several times changing the kernel function and checking the accuracy of the results to get the optimum function. Other parameters were optimized by trying different inputs and evaluating the accuracy of the resulted Z-factor value against actual values. The main other values that can affect the SVM results are regularization strength (Lambda), the C parameter which is the penalty parameter of the error term, and the value

<table>
<thead>
<tr>
<th>Statistical Parameter</th>
<th>Pseudo-Reduced Pressure</th>
<th>Pseudo-Reduced Temperature</th>
<th>Z-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.6</td>
<td>1.74</td>
<td>1.05</td>
</tr>
<tr>
<td>Median</td>
<td>7.6</td>
<td>1.55</td>
<td>1.03</td>
</tr>
<tr>
<td>Mode</td>
<td>0.2</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>4.29</td>
<td>0.57</td>
<td>0.25</td>
</tr>
<tr>
<td>Sample Variance</td>
<td>18.38</td>
<td>0.33</td>
<td>0.06</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-1.2</td>
<td>-0.53</td>
<td>-0.06</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.5E-15</td>
<td>0.79</td>
<td>-0.07</td>
</tr>
<tr>
<td>Range</td>
<td>14.8</td>
<td>1.95</td>
<td>1.45</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.2</td>
<td>1.05</td>
<td>0.3</td>
</tr>
<tr>
<td>Maximum</td>
<td>15</td>
<td>3</td>
<td>1.75</td>
</tr>
<tr>
<td>Sum</td>
<td>45144</td>
<td>10320.75</td>
<td>6252.1</td>
</tr>
<tr>
<td>Count</td>
<td>5940</td>
<td>5940</td>
<td>5940</td>
</tr>
</tbody>
</table>
of epsilon (ε) which defines a margin of tolerance where no penalty is given to errors. The regularization strength (Lambda) was believed not to have a significant effect on the accuracy of the results in this study. Lambda was kept at the value of 0.0001 where the C parameter had a range of 0.045 to 4500 and the epsilon value was changed throughout several trials from 0.01 to 0.5.

Radial basis function networks model development

RBF mainly consists of two layers, the hidden layer, and the linear output layer. The design method of the RBF network can be one of two types which are newr and newrb. The transfer function of the RBF is radial basis transfer function (Radbas.). Euclidean distance weight function (dist) is used to calculate its weighted inputs and Product net input function (netprod) is used to calculate the net input. The linear transfer function (purelin) is used in the second layer and calculated. In the second layer, the weighted input is determined with dot prod, where sum net input function (netsum) is used to determine net inputs with. The first and second layers have biases. A two-layer network with 0% error on training vectors may be produced using newrb, which also iteratively builds radial basis networks, one neuron at a time. Similar to newrb, newr uses a similar design approach. The distinction is that newrb develops neurons one by one. A radbas neuron is created at each iteration using the input vector that lowers the network error the best. The new network’s error is examined, and if it’s low enough, newrb is completed. If not, the next neuron is inserted. Until the error objective is attained, or the maximum number of neurons is achieved, this process is repeated. The number of neurons with newrb was set to change from 5 to 50 to determine the optimum architecture for the net. The spread constant is another value that affects the results of the RBF approach. In this study, different values ranging from 0.01 to 8 were set and results were evaluated to get the optimum spread constant value.

Functional networks model development

FNs are considered a unique generalization of a NN, which uses data to predict the functions of neurons and domain knowledge to design the network’s structure. Functional networks’ ability to handle functional restrictions based on functional characteristics that could be aware in the approach is a key property (e.g., associativity, distributivity, etc.). The components of a functional networks (FNs) are as follows: the input data is stored in one layer of input storage units. The output data is stored in one layer of output storage units. A set of input values from the preceding layer (of intermediate or input units) are evaluated by one or more layers of processing units, which then deliver a set of output values to the following layer (of intermediate or output units). Each neuron hence has a corresponding neuron function, which may be multivariate and contain an equal number of arguments and inputs. A functional cell is a unit (univariate) of a neuronal function. Oval shapes with the name of the associated function within are used to depict neurons. Nothing, a single layer, or many layers of units that hold the intermediate information generated by neuron units. The output of the processing units may be forced to coincide owing to these layers. The group of direct connections that join units in the input or intermediate layers with neurons, and neurons with intermediate or output units.

Results

The machine learning approach for developing the approaches is mainly evaluated by determining the errors between the actual and predicted values for the Z factor using two statistical metrics named the correlation coefficient (R) and the average absolute percentage error (AAPE). The SVM approach code was run with different algorithms using different types of kernel functions such as Gaussian, Polynomial. The parameter C (penalty parameter of the error term), Lambda (regularization strength), and epsilon (defines a margin of tolerance where no penalty is given to errors) were changed for every run to reach the best result. The best result was achieved with Kernel function ‘Gaussian’ with C=450, Lambda= 0.000, and epsilon= 0.01. The training and testing data showed 0.58 and 0.6 for the AAPE respectively and 0.99 R for both as shown in figure 3.

![Figure 3 Results cross plots for training (a) and testing processes (b) for Support Vector Machine approach.](image)

The AAPE and R for the whole data were 0.59 and 0.99 respectively as mentioned in figure 4.

![Figure 4 Z- Factor chart for Support Vector Machine approach.](image)
RBF approaches, newrb and newrbe codes were tested to predict the Z-factor using the same data set for the training and the testing data. Newrb approach showed better results than newrb with 0.99 for R and 0.14 for AAPE. 0.13 and 0.16 AAPE were obtained for both the training and testing data respectively, while R is 0.99 for both as shown in figures 5 and 6.

Newrbe approach showed better results than newrb with 0.99 for R and 0.14 for AAPE. 0.13 and 0.16 AAPE were obtained for both the training and testing data respectively, while R is 0.99 for both as shown in figures 5 and 6.

Table 2 and figure 7 summarize the best net main parameters of the best approach obtained from the RBF ML technique.

Table 2 The developed Radial Basis Function

<table>
<thead>
<tr>
<th>Radial Basis Function Structure</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Features</td>
<td>2</td>
</tr>
<tr>
<td>Output</td>
<td>1 (Z factor)</td>
</tr>
<tr>
<td>Hidden layer</td>
<td>1</td>
</tr>
<tr>
<td>Transfer function for hidden-layer</td>
<td>Radial Basis</td>
</tr>
<tr>
<td>Neurons Number</td>
<td>4158</td>
</tr>
<tr>
<td>Transfer function for outer layer</td>
<td>Purline</td>
</tr>
<tr>
<td>Training to Testing</td>
<td>70 to 30</td>
</tr>
</tbody>
</table>

After comparing the three approaches to predict Z-factor using Standing and Katz charts data, RBF showed better results than SVM and FN. In the following section, the results of the ML techniques will be compared with different published correlations from the literature to predict Z-factor using Standing and Katz charts data.

Discussion

Scientists worked on this topic before as it is important to eliminate the need for the manual usage of Standing & Katz charts. This study is outperforming all the previous research in terms of accuracy and application range. In this section of the study, a detailed explanation and comparison with the most accurate Z-factor correlations from previous work, would emphasize the advantage of this research.

Lateef’s explicit correlation was proposed to calculate the Z-factor [16]. Lateef’s correlation was modified from the Hall and Yarborough’s implicit correlation [9]. this correlation was proposed to be valid in the range of 1.15 ≤ Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15 with 0.44 AAPE and 0.99 R as shown in figure 10. Lateef’s correlation compared with other explicit correlations such Sanjari and lay [15], Heidaryan et al [13], and Azizi [14] shows better performance to predict the Z-factor compared with the mentioned correlations.
The best ML approach (RBF) from this research was compared to Lateef and other explicit correlations within the same data range (1.15 ≤ Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15) to predict the Z-factor. Table 3 summarizes the results obtained by Lateef’s correlation and what has been conducted in this research using RBF approach. RBF approach from this study predicting Z-factor is much better than the mentioned explicit correlations, resulting 0.11 AAPE and 0.99 R for the data range used in Lateef’s correlation.

Table 3 Comparison of the explicit correlations with the best ML approach (RBF)

<table>
<thead>
<tr>
<th>Correlation</th>
<th>AAPE (%)</th>
<th>R</th>
<th>MAXAE</th>
<th>MAXAAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanjari and Lay (2012)</td>
<td>3.7</td>
<td>0.95</td>
<td>0.77</td>
<td>45.57</td>
</tr>
<tr>
<td>Heidaryan et al. (2010)</td>
<td>0.49</td>
<td>0.99</td>
<td>0.02</td>
<td>3.7</td>
</tr>
<tr>
<td>Azizi et al. (2010)</td>
<td>13.5</td>
<td>0.87</td>
<td>0.35</td>
<td>60</td>
</tr>
<tr>
<td>Lateef correlation</td>
<td>0.44</td>
<td>0.99</td>
<td>0.03</td>
<td>5.99</td>
</tr>
<tr>
<td>The developed RBF model</td>
<td>0.11</td>
<td>0.99</td>
<td>0.02</td>
<td>2</td>
</tr>
</tbody>
</table>

The above comparison proved the advantage of the current study over literature work in terms of accuracy. From another side, this study is outperforming the previous work in terms of range. The range of Tpr used to develop Lateef’s correlation is not the same range for Standing & Katz charts. All the AI approaches developed in this research used the full range same as the Standing & Katz charts’ Ppr and Tpr ranges.

Conclusions
Results from the different machine learning techniques (Support vector machine (SVM), Radial basis function (RBF), and Functional network (FN)) showed the charts data range (1.05 ≤ Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15). RBF (newrb) machine learning technique results performance is better than SVM and FN giving 0.99 for the correlation coefficient and 0.14 for the average absolute percentage error. The approach inputs are the pseudo-reduced temperature (Tpr) and pseudo-reduced pressure (Ppr) and Z-factor as the output. The developed RBF approach was compared with the other Z-factor explicit correlations and outperformed all previous work. The accuracy of the results of the machine learning technique (RBF) is 0.11 for the average absolute percentage error and 0.99 for the correlation coefficient. This performance accuracy exceeds the one by Lateef and the other empirical correlation within the range of (1.15 ≤ Tpr ≤ 3 and 0.2 ≤ Ppr ≤ 15).

Funding
There is no external fund for this research.

Author Contributions
A.M. supervised the work and reviewed the manuscript writing. M.A., and A.A. performed the data collection, methodology work, results analysis, and manuscript writing.

Conflicts of Interest
The author declares no conflict of interest.

References

