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Abstract 

This study aims to assess the effectiveness of several decision tree machine techniques for 
identifying formation lithology of complex carbonate reservoir rocks in Gamal oil field. A 
total of 20966 log data points from four wells were used to create the study's data. Lithology 
is determined using seven log parameters. The seven log parameters are the density log, 
neutron log, sonic log, gamma ray log, deep lateral log, shallow lateral log, and resistivity 
log. Different decision tree-based algorithms for classification approaches were applied. 
Several typical machine learning models, namely the, Random Forest. Random trees, J48, 
reduced-error pruning decision trees, logistic model trees, Hoeffding Tree were assessed 
using well logging data for formation lithology prediction. The obtained results show that 
the random forest model, out of the proposed decision tree models, performed best at 
lithology identification, with precession, recall, and F-score values of 0.913, 0.914, and 
0.913, respectively. Random trees came next. with average precision, recall, and F1-score 
of 0.837, 0.84, and 0.837, respectively, the J48 model came in third place. The Hoeffding 
Tree classification model, however, showed the worst performance. We conclude that 
boosting strategies enhance the performance of tree-based models. Evaluation of 
prediction capability of models is also carried out using different datasets. 

Introduction  

        In carbonate reservoir rocks, post diagnostic 

processes such as dissolution, recrystallization, 

cementation, mineral replacement and 

dolomitization can bring significant changes in 

petrophysical properties and then complex mineral 

pattern and then heterogeneous reservoir. Lithology 

must be established using well-log data to explore 

and produce petroleum. The lithology model of a 

carbonate reservoir rocks can be created by 

quantitative analysis of logging data. The high cost of 

drilling cores limits the amount of required logging 

data. Due to the intricacy of lithology, the 

distributions of logging data from distinct lithologies 

overlap, expanding the number of possible 

identifications. Thus, it is essential to use methods 

that provide an accurate means of forecasting 

lithology of carbonate reservoir rocks. Researchers 

have recently become more interested in applying 

machine learning approaches to forecast different 

types of lithology. These approaches to lithology 

identification based on machine learning make an 

effort to train a multi-class classifier model based on 

a large amount of labelled well-logging data with 

logging curves, such as gamma ray (GR) resistivity 

logs, sonic logs, neutron logs, and density logs. 

Various machine learning approaches have been 
proposed for the lithology classification problem. In 
lithological identification using logging data points, 
an artificial neural network first used to classify 
lithology [3,16]. Support Vector Machine (SVM) was 
utilized [1] to classify the lithology with logging data 
points and have accurately identified the lithology 
facies of heterogeneous sandstone reservoirs. 
Different types of multi-classification SVM were 
applied to identify volcanic lithology with well log 
data [6]. Random Forest (RF) was utilized to predict 
lithological mapping based on geophysical and 
geochemical data [9]. In the field of spatial modelling 
and classification based on log data. Novel hybrid 
inferential system called ANN-HMM models for 
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lithofacies classification [7]. Approaches to model 
the rock lithology was developed by using recurrent 
neural networks were used [2,15]. 
An artificial neural network model to identify the 

lithology of a layer as it was being drilled using 

neighboring well data and real-time drilling data [13] 

from wells in the South Pars gas field. Using data 

from the Daniudui and Hangjinqi gas fields, five 

common machine learning techniques—Naïve Bayes, 

SVM, RF, Artificial Neural Network, and Gradient 

Tree Boosting—were assessed for detection of 

formation lithology [20]. 

Conventional single classification algorithms such as 

decision trees, SVM, and Bayes developed to 

determine the lithology of the Longqian region of 

China using well logs [8]. In order to predict the 

geological facies using well log data in the Anadarko 

Basin, Kansas, supervised learning algorithms, 

unsupervised learning algorithms, and a neural 

network machine learning algorithm were presented 

[12]. Generative adversarial networks were 

presented to recreate thin section images and 

identify carbonate lithology [14]. An Extreme 

Gradient Boosting and Bayesian Optimization 

classifier was proposed for identifying the lithology 

of the Daniudui and Hangjinqi gas fields [18]. Three 

machine learning algorithms presented to determine 

the lithology while drilling. Neural networks (NN), RF, 

extreme gradient boosting tree (XGBoost) 

algorithms, and one-versus-one support vector 

machines (OVO SVMs) are used to create machine 

learning (ML) [17]. A coarse-to-fine architecture that 

incorporates outlier detection, multi-class 

classification, and a tree-based classifier suggested to 

identify the lithology using two actuals well logging 

data sets [19]. A hybrid framework consisting of 

artificial neural networks and hidden Markov models 

(ANN-HMM) was suggested for the classification of 

the lithological sequence [11]. They thoroughly 

evaluated the effectiveness of the suggested 

classifier using a combination of extreme gradient 

boosting (XGBoost) and Bayesian optimization (BO) 

[18]. Coal pay zones were predicted using a variety of 

machine learning algorithms (LR, SVM, ANN, RF, and 

XGBoost) and data manipulation methods (NROS and 

SMOTE) [21]. Bi-directional gated recurrent units and 

a conditional random field layer (Bi-GRU-CRF) are the 
models used in the lithological sequence 

classification technique that was proposed using the 

neural networks and hidden Markov models (ANN-

HMM) hybrid framework [10]. In contrast to the 

ANN, SVM, AdaBoost, and RF classifiers, the 

performance of the gradient boosting decision tree 

(GBDT) classifier was demonstrated and confirmed 

[22]. A Gray Wolf Optimization Algorithm (GWO-

SVM)-based automatic identification system for 

lithology logging has been presented [11]. So far it 

becomes vital to assess the machine learning model's 

propensity to forecast the kind of lithology under 

various circumstances. The classification of lithology 

in the Camal oil field using tree-based machine 

learning models is tested in this paper using 

conventional log curves. 

Used Well Logging Data 

     A total of 20966 log data points from four wells 

were collected from the Camal oil field to perform 

the evaluation, including seven logging parameters 

(density log (RHOB), neutron log (NPHI), sonic log 

(DT), gamma ray log (GR), deep lateral log (LLD), 

shallow lateral log (LLS), and resistivity log (ML).) with 
corresponding depths. The output class to be 

identified is the type of lithology (shale, limestone 

and dolomite). The range of the seven feature 

parameters are listed in Table 1. The evaluation was 

also conducted based on the three datasets listed in 

Table 2. 

 
Table 1 Range of parameters for lithology 
classification 

Parameter Maximum Minimum STD Mean 

ML 1952.27 0.23 273.34 112.99 

LLD 2064.76 0.23 63.72 29.74 

LLS 2064.76 0.22 100.03 33.60 

Depth 6100 520 1555 3421 

GR 139.37 7.87 21.36 43.69 

RHOB 2.95 1.94 0.18 2.28 

NBHI 0.45 -0.01 0.10 0.27 

DT 141.76 38.71 17.87 91.54 

 

Table 2 Different datasets used for lithology 
prediction 

Datasets Points Input parameters 

1 22957 ML, LLD, LLS, GR, RHOB, NBHI, DT 

2 32406 GR, RHOB, NBHI, DT 

3 20966 ML, LLD, LLS, GR, RHOB, NBHI, DT 

Machine Learning Models 

     Different decision tree-based algorithms for 

classification approaches were applied. Six typical 

machine learning models, namely the Random Forest 

(RF). Random trees (RT), J48, reduced-error pruning 

decision trees (REPT), logistic model trees (LMT), and 

Hoeffding Tree (HT). Figure 1 presents the proposed 

lithology classification methods for this investigation. 
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Figure 1 Methodology for evaluation ML model.  

Decision tree 
     Three nodes make up a decision tree, which is a 
classification method: the leaf node, the branch 
(edge or link), and the root node. The test conditions 
for various attributes are represented by the root, all 
possible test outcomes are represented by the 
branch, and the labels of the classes to which the leaf 
nodes belong are present. The beginning of the tree, 
sometimes referred to as the top of the tree, is home 
to the root node. A decision tree is a hierarchical 
decision support model that uses a tree-like model of 
decisions and their potential repercussions, such as 
utility, resource costs, and chance event outcomes. 
It's one method of presenting an algorithm with just 
conditional control statements. In operations 
research, decision analysis in particular, decision 
trees are frequently utilized.  

 
Random forest 
     Known also as random decision forests, random 
forests are an ensemble learning technique that 

builds a large number of decision trees during the 
training phase for tasks like regression and 
classification. The class that the majority of the trees 
choose is the random forest's output for 
classification problems. The mean or average 
prediction made by each individual tree is returned 
for regression tasks [23]. The tendency of decision 
trees to over fit their training set is compensated for 
by random decision forests. Although they are less 
accurate than gradient-boosted trees, random 
forests still perform better than choice trees in most 
cases. Performance, however, might be impacted by 
data properties. 

Reduced-error pruning decision tree 
     In machine learning and search algorithms, 

pruning is a data compression approach that 

minimizes the size of decision trees by eliminating 

non-essential and redundant portions for instance 

classification (Matti, 2003). Pruning decreases 

overfitting, which lowers the complexity of the final 
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classifier and increases predictive accuracy. Reduced 

error pruning is one of the most straightforward 

types of pruning. Every node, starting from the 

leaves, gets swapped out for its most popular class. 

The adjustment is retained if there is no impact on 

the prediction accuracy. Reduced mistake trimming 

gives performance and simplicity benefits, although 

being a little naïve. 

 

Logistic model tree  

Combining logistic regression (LR) and decision tree 

learning, the logistic model tree (LMT) is a 

classification model that comes with a corresponding 

supervised training algorithm [24]. The concept of a 

logistic model tree is derived from the previous 

concept of a model tree, which is a decision tree with 

linear regression models at the leaves that generates 

a piecewise linear regression model instead of the 

piecewise constant model that would be produced 

by regular decision trees with constants at the leaves 

[24]. 

 

Hoeffding tree  

     One decision tree learning technique for 

classifying stream data is the Hoeffding tree 

algorithm. An application of the incremental decision 

tree algorithm is the hoeffding tree. Originally, it was 

used to monitor clickstreams on the Internet and 

build models to forecast which hosts and websites a 

user is most likely to visit. It usually produces a 

decision tree that is almost exactly the same as that 

of standard batch learners and runs in sublinear time. 

It makes use of Hoeffding trees, which take use of 

the fact that selecting the best splitting attribute is 

frequently possible with a small sample size. The 

Hoeffding bound, often known as the additive 

Chernoff bound, provides mathematical support for 

this theory. 

 

J48 classifier 

     It is a decision tree generation method produced 

by C4.5. An information-theoretic classification 

algorithm called C4.5 generates decision trees. 

Model J48, another name for Ross Quinlan's previous 

ID3 algorithm. Because C4.5 generates decision trees 

that are used for classification, the program is 

frequently referred to as a statistical classifier [4]. 

Data Pre-processing of Well Logs  

     Using seven logging features—density log (RHOB), 

neutron log (NPHI), sonic log (DT), gamma ray log 

(GR), deep lateral log (LLD), shallow lateral log (LLS), 

and resistivity log—a total of 20966 well log data 
points were used for lithology classification (ML). 
 

 
Outlier removal 

 
 The technique of unsupervised learning was applied to 

identify outliers within the dataset. These data 

samples might have come from contaminated or 

incorrectly entered logging parameters by hand. 

Finding data samples that differ from the distribution 

of the majority of data is the goal of outlier 

identification. Outliers and extremes sometimes 

deteriorate the performance of classifiers that 

cannot be used in a dataset. For this purpose, the 

interquartile range (IQR) and local outlier factor (LOF) 

filters were applied. The IQR filter detects outliers 

and extreme values. Then the filter remove with 

value was implemented to remove outliers and 

extremes from data sets. The IQR filter is better than 

other available filters because it is a robust measure 

of variability that is not affected by extreme values or 

outliers. Additionally, it may be applied to a variety 

of datasets and is simple to use. LOF identifies an 

outlier based on the local neighborhood, which 

means it considers the density of the neighborhood 

to identify an outlier. Because it can detect outliers 

in a dataset that would not be outliers in another part 

of the dataset, the LOF algorithm outperforms 

alternative filters that are currently on the market. 

The LOF is shown to perform better for anomaly 

detection than many other methods and can also be 

utilized to construct a distinct dissimilarity function. 

Experiments were conducted to evaluate the 

performance of both filters. According to the results, 

all classifiers have a higher prediction accuracy for 

the LOF (Table 3). 

 

Table 3 Prediction accuracy for models utilizing IQR and 

LOF filters 

ML model IQR LOF 
RT 78.71 79.93 

RF 87.57 87.78 

J48 81.80 82.72 

LMT 81.67 83.51 

REPT 78.07 80.15 

HT 57.35 59.71 

 

Manage imbalanced dataset 

     To address imbalanced data and prevent 

overfitting or underperformance, we applied the 

Synthetic Minority Over-Sampling Technique 

(SMOTE). By increasing the proportion of minority 

instances in the dataset, this technique-maintained 

balance and enhanced algorithm performance. We 

employed the SMOTE function [5] specifically to 

tackle class imbalance issues related to different 

lithology types, enhancing lithology prediction model 

performance. Figure 2 shows how the data set's 

distribution changed both before and after the 

SMOTE approach was used in various experiments. 
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Figure 2 Dataset distribution before and after 

oversampling  

The application of the SMOTE method improved the 
model's performance. For the random forest model, 
for instance, oversampling raised accuracy from 
88.2% to 92.1%. 

Normalization 

     Since logging indicators have varying dimensions, 

we performed data normalization after data 

collection, mining, and quality control. This step 

ensures consistency and allows us to combine 

dimensionless data to create new analysis indicators. 

All of the dataset's numerical values were 

standardized to fall between 0 and 1 before the 

machine learning model was trained. 

Building Predictive Models 

     Tree-based models were constructed, namely RF, 

RT, J48, REPT, LMT, and HT. The prediction model 

was trained using the training dataset (80%), and it 

was tested using the test dataset (20%). The 

classification models were also constructed using a 

ten-fold cross-validation technique. 

Hyper parameters 

     Hyper parameters are parameters that control the 

learning process in machine learning models. unlike 

other parameters, such as node weights, which are 

learned during training, hyper parameters are set 

beforehand [26]. They can be categorized as model 

hyper parameters, which influence model selection, 

or algorithm hyper parameters, which affect the 

learning process's speed and quality. model hyper 

parameters include factors like neural network 

topology and size, while algorithm hyper parameters 

encompass settings like learning rate, batch size, and 

mini-batch size. Different machine learning 

algorithms require specific hyper parameters, and 

tuning them is crucial for adapting models to specific 

datasets [25]. Tree depth and the total number of 

trees in a random forest are two instances of hyper 

parameters for tree models, and learning-related 

settings like the learning rate, batch size, and mini-

batch size.  

Tuning hyper parameter  

     This study utilized hyper parameter tuning to 
optimize machine learning models for lithology 
identification. A 10-fold cross-validation method was 
employed to find the best hyper parameter set for 
these models. This approach evaluated the influence 
of various hyper parameters on model performance 
and emphasized the importance of hyper parameter 
tuning in machine learning. The optimal hyper 
parameters were determined based on the cross-
validation results. 

     In order to construct the model classifier, ten-fold 
cross-validation was used, and the hyper parameters 
were optimized. There were ten subsets of the 
training data in the ten-fold cross-validation process. 
Nine subsets of the training datasets were chosen for 
model training and hyper parameter tuning, while 
one subset was used for model validation. The cross-
validation curve for the RT model with hyper 
parameters is displayed in Figure 3. (K: the number 
of characteristics selected at random, M: the 
minimum total weight of leaf instances, and max: the 
maximum tree depth).  From this Figure, the ideal 
hyper parameters can be found. 

 

Figure 3 Cross validation accuracy of hyperparameter 

for RT. 

Attribute Selection 

     The correlation between the parameters may 
affect the ability of the model to forecast. Therefore, 
the analysis of input data is an important pre-
processing technique beneficial for quality control, 
and through data mining, we can select more 
influential parameters for lithology detection, reduce 
the dimension of the input parameter data, reduce 
overfitting, and improve accuracy. In this study, the 
importance of the features was evaluated for the 
prediction models. For selecting the log parameters, 
four algorithms were recommended in conjunction 
with rankers, which rank attributes by their 
individual evaluations. According to attribute rank, 
the major features contributing to lithology 
prediction were determined. The algorithms used 
include Info Gain, Relief, and One R. The results are 
presented in Figure 4-6.  
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   Figure 5 Rank of each feature using OneR algorithm 

 

Figure 6 Rank of each feature using Relief algorithm.   

 
     To evaluate the prediction capability of the 
models at various log parameters, classification was 
performed based on eight (1-8) functional datasets, 
which are listed in Table 4. 

 
Table 4 Datasets of different functional forms 

Datasets Log parameters 

1 Depth, RHOB, GR, LLD 

2 Depth, RHOB, GR, LLD, ML 

3 Depth, LLD, ML 
4 Depth, DT, LLD, LLS, ML 

5 Depth, NBHI, RHOB, GR 

6 Depth, NBHI, RHOB, GR, DT 

7 Depth, RHOB, GR, LLS 

8 Depth, RHOB, GR, LLS, ML 

 

Summary of influence of different type of well 
logs on performance of different models is presented 
in Figure 7. Evidently, the degree to which the 
feature characteristics have an impact is not 
significantly different for all models except the HT 
algorithm, which, when considered as a whole, 
exhibits poor accuracy. All models performed well in 
Set 5. The RF model provides the best results for each 
set of variables. Figure 8 shows the link between 
accuracy for various models and the amount of log 
parameters. 

 
Figure 7 Performance of model with different parameter 

sets. 

 
 

Figure 8 Influence of logging parameters on lithology 
prediction. 

     As demonstrated, it has been shown that the log 
parameters required for lithology prediction can be 
reduced to four. the recommended methods for 
identifying lithology include density log (RHOB), 
neutron log (NPHI), sonic log (DT), and gamma ray log 
(GR). other logs such as deep lateral log (LLD), 
shallow lateral log (LLS), and micro resistivity log (ML) 
are also suggested for this purpose. 

Results and Discussion 

Evaluation metrics and model performance 

     In this study, various evaluation metrics were used 
to assess the performance of classification models. 
These metrics included classification accuracy (E), 
precision (PR), recall (R), F-measure (F1), ROC area 
and the PRC area in order to more thoroughly assess 
the effectiveness of the learning model and the 
impact of lithology identification. Every classification 
model was assessed using ten-fold cross-validation. 
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In Table 5, metrics scores for various models are 
presented. 

 
Figure 9 Accuracy for Training and cross validation set of 

different models. 

Table 5 Weighted average of evaluation metrics 
 for different models- cross validation and raining 

Model  
Data 
set 

PR R F1 ROC  PRC  

RT 
  

CV 0.895 0.896 0.895 0.927 0.832 

TR 0.901 0.902 0.901 0.935 0.84 

RF 
  

CV 0.919 0.92 0.919 0.988 0.972 

TR 0.913 0.914 0.913 0.985 0.967 

REPT 
  

CV 0.83 0.833 0.831 0.943 0.857 
TR 0.798 0.798 0.798 0.924 0.827 

LMT 
  

CV 0.835 0.836 0.835 0.927 0.857 

TR 0.833 0.833 0.833 0.928 0.856 

J48 
  

CV 0.848 0.85 0.848 0.897 0.800 

TR 0.837 0.84 0.837 0.891 0.792 

HT 
  

CV 0.452 0.552 0.427 0.614 0.42 

TR 0.525 0.538 0.516 0.737 0.555 

 
     When compared to the other five classifiers, the 
RF model produces superior classification results. 
The HT performs the worst, while the RT is the next-
best model by performance. As shown in Figure 9 and 
Table 6, Among the tree classifiers, the RF has the 
best performance, with relative high classification 
accuracy of 92% and 91.35% for cross-validation and 
training, respectively. This algorithm has high 
performance in identifying sandstone and dolomite 
(Table 6). Model J48 ranked third, with average 
precision, recall, and F-measures of 0.848, 0.85, and 
0.848, respectively. 

 
Table 6 Performance of each lithology  

class -cross-validation for RF model  

Class PR R F1 ROC PRC 

Sh 0.894 0.823 0.857 0.979 0.939 

S 0.919 0.95 0.934 0.987 0.983 

SS 0.92 0.92 0.92 0.995 0.973 

LS 0.927 0.94 0.933 0.997 0.981 

DM 0.976 0.993 0.985 1 0.996 

Aver. 0.919 0.92 0.919 0.988 0.972 

 
Confusion matrix  

 
     The confusion matrix was utilized to compare the 
performance of different models in classifying 
lithology classes. The confusion matrix presents the 
percentage of correctly classified instances for each 
lithology class. It highlighted instances where certain 
lithology classes were incorrectly identified as 

others.  The confusion matrix of the lithological 
classes, derived for different classification models, is 
shown in Table 7. 

 
                         Table 7 Confusion matrix for different 

 classifiers using cross validation 
a- HT, b- J48, c- LMT, d- RT, e- RF, f- REPT 

A
ct

u
al

 la
b

el
 

 

Sh 0.19 23.64 0.01 1.66 0.13 
S 0.10 47.93 0.02 2.09 0.03 

SS 0.01 7.17 0.03 0.70 0.04 
LS 0.31 3.64 0.04 6.65 0.40 

DM 0.00 1.94 0.05 2.86 0.35 

 
Sh S SS LS DM 

 
Predicted label (a) 

A
ct

u
al

 la
b

el
 

 

Sh 20.07 4.64 0.80 0.77 0.04 
S 3.90 46.41 1.09 0.07 0.05 

SS 0.78 1.53 5.59 0.20 0.06 
LS 0.50 0.08 0.15 10.47 0.14 

DM 0.02 0.06 0.06 0.12 2.41 
 Sh S SS LS DM 
 Predicted label (b) 

A
ct

u
al

 la
b

el
 

 
Sh 18.31 4.37 0.83 0.82 0.03 
S 3.95 42.26 1.38 0.05 0.05 
SS 0.72 1.44 5.17 0.17 0.05 
LS 0.55 0.05 0.19 9.56 0.15 

DM 0.03 0.03 0.03 0.05 9.76 
  Sh S SS LS DM 
  Predicted label (c) 

A
ct

u
al

 la
b

el
 Sh 16.66 2.96 0.51 0.58 0.03 

S 2.81 36.68 1.06 0.02 0.03 
SS 0.47 0.93 11.30 0.12 0.04 
LS 0.50 0.03 0.16 8.16 0.10 

DM 0.01 0.02 0.03 0.04 16.76 
  Sh S SS LS DM 

  Predicted label (d) 

A
ct

u
al

 la
b

el
 Sh 18.63 3.03 0.37 0.59 0.03 

S 1.62 42.11 0.58 0.01 0.03 
SS 0.34 0.66 12.92 0.10 0.02 
LS 0.26 0.04 0.15 9.18 0.14 

DM 0.01 0.01 0.02 0.02 9.14 
  Sh S SS LS DM 
  Predicted label (e)  

A
ct

u
al

 la
b

el
 Sh 13.45 5.19 1.13 0.89 0.08 

S 3.38 35.59 1.55 0.02 0.06 
SS 0.98 1.90 9.76 0.17 0.06 
LS 0.52 0.06 0.23 7.88 0.25 

DM 0.04 0.03 0.08 0.07 16.62 
  Sh S SS LS DM 
 

 
Predicted label (f) 

 

Boosting-based approach 

     Boosting techniques, specifically AdaBoost meta-
learners combined with classification tree models, 
were employed to enhance model performance. 
Table 8 and Figure 10 present the mean and 
weighted mean performance measures for 
classification models employing boosting 
methodology. These metrics include precision, recall, 
F1-scores, the area under the precision-recall curve, 
and the ROC area. The models were trained and 
cross-validated across different variations. 
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Figure 10 Accuracy for training and cross-validation 
 of a set of different models: A boosting approach. 

 

Tables 10 and Figure 11 provide the average and 

weighted average performance metrics for 

classification, such as precision recall, F1-scores, the 

area of the precision recall curve, and the ROC area, 

for various models that were trained and cross-

validated. 

 
Table 8 Performance metrics for different models- cross  

validation and training -boosting approach 

Model 
Data 
Set 

PR R F1 ROC  

HT 
TR 0.469 0.547 0.436 0.584 

CV 0.475 0.541 0.444 0.616 

J48 
TR 0.897 0.898 0.897 0.978 

CV 0.91 0.911 0.91 0.981 

LMT 
TR 0.89 0.891 0.89 0.975 

CV 0.882 0.883 0.882 0.971 

REPT 
TR 0.883 0.885 0.883 0.972 

CV 0.886 0.888 0.886 0.974 

RF 
TR 0.892 0.893 0.89 0.981 

CV 0.888 0.888 0.886 0.979 

RT 
TR 0.823 0.822 0.823 0.869 

CV 0.828 0.829 0.828 0.872 

 

The results indicated that using a boosting 

approach with REPT, LMT, J48, and HT provided good 

performance metrics. Generally speaking, boosting 

with J48 provides the best performance metrics. 

Conversely, combining AdaBoost with the RT 

classifier yielded poorer results compared to other 

combinations. Some models showed limited 

responsiveness or negative responses to 

performance-enhancing techniques. To assess the 

predictive performance of the models, diverse data 

sets were employed for evaluation. Figure 6 

demonstrates the precision attained by distinct 

algorithms across varying databases. 

The prediction capabilities of the models were 

evaluated using different datasets. Figure 11 shows 

the prediction accuracy of different algorithms based 

on various datasets, as listed in Table 2. 

 

Figure 11 Prediction performance of different 
models using various datasets. 

   As shown, all the models provided slightly the same 
accuracy for set-3 and set-1. As can be seen, the J48 
model outperformed all models for both datasets, 
followed by the LMT, whereas the HT model had the 
worst performance. The best accuracy was obtained 
using data set-3 from all the models. Similar results 
for different datasets were obtained by J48, LMT, 
REPT, and RF. The lowest accuracy was obtained by 
the HT model for all the three datasets. The 
confusion matrix of the lithological classes, derived 
with an optimal approach, is shown in Table 9. 

Table 9 Confusion matrix for different  
optimized classifiers using cross validation. 

a- HT, b- j48, c- LMT, d- RT, e- RF 

A
ct

u
al

 la
b

el
 

 

Sh 1.57 24.29 0.08 0.16 0.58 

S 1.14 50.59 0.15 0.08 0.24 

SS 0.32 7.55 0.11 0.09 0.20 

LS 1.24 4.62 0.19 3.69 1.76 

DM 0.22 4.94 0.21 2.17 3.31 
 Sh S SS LS DM 
 Predicted label (a) 

A
ct

u
al

 la
b

el
 

 

Sh 22.84 3.33 0.34 0.62 0.02 

S 2.28 49.52 0.52 0.02 0.01 

SS 0.56 1.08 6.55 0.15 0.03 

LS 0.36 0.01 0.12 11.08 0.10 

DM 0.04 0.03 0.04 0.11 1.13 
 Sh S SS LS DM 

 Predicted label (b) 

A
ct

u
al
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b
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Sh 21.73 3.82 0.36 0.76 0.00 

S 2.88 48.67 0.62 0.01 0.01 

SS 0.64 1.27 6.12 0.19 0.05 

LS 0.52 0.03 0.15 10.73 0.07 
DM 0.04 0.02 0.06 0.14 1.09 

  Sh S SS LS DM 
  Predicted label (c) 
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ct

u
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Sh 17.77 4.77 0.94 0.81 0.07 

S 4.50 41.57 1.46 0.10 0.07 

SS 0.98 1.57 4.71 0.21 0.08 

LS 0.77 0.14 0.24 9.17 0.17 

DM 0.07 0.06 0.06 0.08 9.64 
  Sh S SS LS DM 
  Predicted label (d) 
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Table 10 displays the performance matrices for the 
top models, J48. 

Table 10 Accuracy measures for J48 model for cross-
validation 

Class Precision Recall F1 ROC  PRC  

Sh 0.876 0.839 0.857 0.97 0.927 

S 0.915 0.946 0.93 0.98 0.976 

SS 0.869 0.762 0.812 0.979 0.883 

LS 0.924 0.952 0.938 0.996 0.976 

DM 0.987 0.992 0.989 1 0.997 

Average 0.91 0.911 0.91 0.981 0.959 

 
As shown in the Table 10, J48 model performed 

well in distinguishing between limestone and 

dolomite. Among the models used to categorize 

limestone and dolomite, J48 performed the best. 

The analysis reveals that the models exhibited 

comparable accuracy levels for set-3 and set-1. In 

particular, the J48 model demonstrated superior 

performance across both datasets, followed by the 

LMT model, while the HT model showed the lowest 

performance. The highest accuracy was achieved 

with set-3 across all models. Consistently, J48, LMT, 

REPT, and RF yielded similar results across various 

datasets. In contrast, the HT  

Conclusion 

Some conclusions can be summarized from this 

work as follows: 

1. The study evaluated the effectiveness of various 

decision tree-based machine learning algorithms for 

lithology identification using three sets of logging 

data. The outcomes of training, cross-validation, and 

experimentation were considered. 

2. The Random Forest model demonstrated superior 

performance in lithology identification, achieving 

precision, recall, and F-score values of 0.913, 0.914, 

and 0.913 respectively. The study emphasized the 

significance of optimization techniques like 

combining the SMOTE technique with machine 

learning, hyper-parameter tuning, and boosting-

based approaches to enhance model performance. 

3. The boosting approach applied to decision trees 

significantly improved model performance. 

Furthermore, the study investigated the impact of 

reducing the dimensionality of input log parameters 

on model prediction performance using various 

techniques. 
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