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Abstract 
 
Lithology classification is crucial for understanding subsurface geology and enhancing 
petroleum resource exploration. This study proposes a voting classifier that combines two 
base models, namely Weighted Class Random Forest (WCRF) and Bayesian Optimized 
Extreme Gradient Boosting (XGBoost-BO), to improve lithology classification from well log 
data. The dataset comprised imbalanced well log data from 10 Norwegian wells in the 
Utsira formation, totaling 4,327 samples with 7 well logs, and 7 lithology classes. WCRF 
handled class imbalance by assigning weights to each class based on the reciprocal of class 
frequencies in the training data, while XGBoost-BO used a balanced training dataset 
created with the Synthetic Minority Oversampling Technique (SMOTE). The models' 
performance was assessed using metrics like the F1-Score, the area under the receiver 
operating characteristic curve (AUC), and confusion matrix. The average AUC values for 
WCRF and XGBoost-BO were 0.982 and 0.985, respectively, showing high generalization 
performance. The voting classifier achieved the highest performance, with an average F1-
Score of 0.874, surpassing WCRF and XGBoost-BO with F1 scores of 0.866 and 0.861, 
respectively. This voting classifier enhances the accuracy and efficiency of identifying 
subsurface rock types, ultimately reducing costs and risks associated with drilling by 
leveraging data-driven insights. 

Introduction 

Lithology refers to the physical and mineralogical 

characteristics of rock layers, such as composition, 

grain size, texture, and color, which are used to 

identify and classify different rock types within the 

subsurface. Lithology is relevant for understanding 

reservoir quality, predicting fluid flow, and making 

informed drilling decisions. Traditional lithology 

classification methods rely heavily on manual 

interpretation of well logs, core samples, and seismic 

data by geologists and petrophysicists [1-3]. This 

process involves analysing physical measurements, 

such as gamma ray, resistivity, density, and sonic logs, 

to identify different rock types and their properties. 

Visual examination and interpretation are essential in 

this approach, often requiring extensive experience 

and geological knowledge to accurately infer 

lithological characteristics. While effective, traditional 

methods are time-consuming, subjective, and can 

lead to inconsistencies due to human bias or 

variability in geological formations [4-6]. Conversely, 

machine learning provides an automated, data-driven 

method capable of processing large amounts of well 

log and seismic data quickly and consistently [7,8].  

Machine learning (ML)-based lithology 

classification using well log data has become a 

transformative approach in the oil and gas industry, 

allowing for faster and more accurate subsurface 

characterization [9,10]. Well logs, offering 

measurements like gamma ray, resistivity, density, 

and neutron porosity, deliver detailed subsurface data 

that can be used to deduce rock types and properties 

[11]. By training ML models on labelled well log data, 

algorithms can learn to recognize patterns that 

indicate different lithologies, automating a process 

that traditionally required expert interpretation. 

Supervised learning algorithms such as decision trees, 

ensemble methods, support vector machines, or 

neural networks, are commonly applied to classify 

lithology by correlating specific well log readings with 

known rock types. These algorithms have 

demonstrated superior performance compared to 

unsupervised learning methods like K-Means, 

Hierarchical Clustering, Principal Component Analysis 

(PCA), and t-SNE (t-Distributed Stochastic Neighbor 

Embedding) [12}. 

Wang et al. [13] employed artificial neural 

networks (ANN) and support vector machine (SVM) in 

classifying shale lithofacies from well conventional 
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logs. They identified SVM as the preferred model. Xie 

et al. [14] evaluated the performance of five ML 

algorithms, namely the Naïve Bayes, Support Vector 

Machine (SVM), Artificial Neural Network (ANN), 

Random Forest (RF) and Gradient Tree Boosting (GTB), 

for formation lithology classification using well log 

data from the Daniudui gas field and the Hangjinqi gas 

field. They inferred that the ensemble methods (RF 

and GTB) had better performance than the other ML 

methods. Sun et al. [15] investigated the performance 

of three ML methods in classifying lithology using well 

log data from Yan'an Gas Field. The results showed 

that RF performed best. Saporetti et al. [16] showed 

that Gradient Tree Boosting with a Differential 

Evolution (GTB-DE) performed better in classifying 

lithology than standard GTB, using well log data from 

the Daniudui gas field and the Hangjinqi gas field. Sun 

et al. [12] applied XGBoost with Bayesian 

Optimization (XGBoost-BO) in lithology classification 

using well log data from the Daniudui gas field and the 

Hangjinqi gas field. They compared the performance 

of the proposed model with that of GTB and Gradient 

Tree Boosting with a Differential Evolution (GTB-DE). 

The results revealed that XGBoost-BO performed 

better than GTB and GTB_DE. Zhang et al. [17] 

examined the performance of linear and non-linear 

ML models and concluded that the non-linear models, 

especially RF and XGBoost, had the best performance. 

In this study, a voting classifier, incorporating 

Weighted Class Random Forest (WCRF) and Bayesian 

Optimized Extreme Gradient Boosting (XGBoost-BO) 

as base models, was used to improve lithology 

classification using well log data. The performance of 

the proposed classifier was evaluated based on 

classification metrics such as F1-Score, area under the 

receiver operating characteristic curve (AUC), and 

Confusion Matrix. The performance of the proposed 

voting classifier was compared with that of the base 

models. 

Materials and Methods 

Study Area and Dataset  

 

The study made use of the train data from the 

FORCE Machine Learning competition with well logs 

and seismic 2020 [18]. This train data contained 18 

well logs from 98 wells, 70 formations and 15 groups 

in the Norwegian Sea. The Norwegian Sea is a 

significant area for oil and gas exploration, located 

between the North Sea and Barents Sea along 

Norway’s continental shelf as shown in Figure 1. This 

region is characterized by deep waters, often ranging 

from 200 to over 3,000 meters, and hosts several 

prolific hydrocarbon basins, such as the 

Haltenbanken, More, and Voring basins. Reservoirs in 

the Norwegian Sea are typically composed of Jurassic 

sandstones, with additional potential in Cretaceous 

and Triassic formations. One of the key fields, the 

Ormen Lange gas field, is among Europe’s largest, 

providing natural gas primarily to the UK. How-ever, 

the Norwegian Sea poses considerable challenges due 

to its complex subsurface geology, including thick 

shale sequences and faulted structures, which 

necessitate advanced drilling technologies and 

seismic imaging. Additionally, the cold climate, 

deepwater conditions, and strict environmental 

regulations of Norway require opera-tors to employ 

sustainable practices, including minimizing flaring, 

managing emissions, and protecting the marine 

ecosystem. The Norwegian Sea thus represents a 

blend of vast resource potential and high operational 

standards, reflective of Norway’s strategic approach 

to offshore energy development. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Location of the Norwegian Sea in the North 
Atlantic Ocean [19]. 

This study made use of ten wells from the Utsira 

Formation namely, 16/10-3, 16/8-1, 25/5-1, 30/3-3, 

30/6-5, 31/4-5, 34/10-19, 34/10-21, 34/2-4, and 34/8-

3. Data pre-processing techniques were employed to 

handle missing values, redundant features, and 

outliers. Spectral Gamma Ray log (SGR), Neutron-

Porosity log (NPHI), Shear wave sonic log (DTS, us/ft), 

Photo Electric Factor log (PEF) were dropped due to a 

large percentage of missing values (above 50%) in the 

features as shown in Figure 2. The missing values in 

other features were filled with the median of each 

feature. This proved more effective than filling with 

the mean since outliers sway the mean. In addition, 

the Medium Resistivity Log (RMED) was dropped due 

to its high Pearson’s correlation coefficient of 0.72 

with the Deep Resistivity Log (RDEP) as shown in 

Figure 3. This mitigated the effect of multi-collinearity 

on the models’ performance [20]. Moreover, drop-

ping RMED instead of RDEP showed better model 

performance. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2  A bar plot showing the percentage of missing 
values in the dataset. 
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Figure 3 Heat map of the correlation matrix on the training 
dataset (before dropping RMED). 

The data from the ten wells contained 47,378 

samples, which would require large computational 

resources for model training. Hence, the samples of 

the majority classes (shale, sandstone, and 

sandstone/Shale) were under-sampled to 1000 

samples each to minimize computation. The total 

number of samples in the data became 4,412 samples 

after under-sampling the majority classes as shown in 

Figure 4.   
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                                              (b) 

Figure 4  Distribution of data points across the selected ten 
wells in the Utsira Formation. (a) before under-sampling 
the majority classes to 1000 data points; (b) after under-
sampling the majority classes to 1000 data points. 

There were only 7 samples of the marl class in the 

data, so it was dropped as the number of samples was 

very small for model training. Hence, the data was left 

with seven lithology classes with the minority classes 

being tuff, dolomite, and coal. Figure 5 shows that 

coal was situated within a depth range of about 700m 

to 850m, and tuff could be found at greater depths of 

about 1700m to 1850m. Figure 6 shows the 

distribution of lithology classes across depth in well 

16/10-3, well 34/10-19, and well 30/3-3, while Figure 

7 shows the count of lithology classes across the ten 

wells. 

 

 

 

 

 

 

 

 

 

Figure 5 The distribution of lithology classes across depth. 
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Figure 6  The distribution of lithology classes across depth 
in three wells. (a) well 16/10-3; (b) well 34/10-19; (c) well 
30/3-3. 
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          (b) 
Figure 7 The count of lithology classes across the ten wells: 
(a) before under-sampling the majority classes to 1000 
data points; (b) after under-sampling the majority classes 
to 1000 data points. 

We used Tukey’s Fences for outliers’ detection 

and removal based on the interquartile range (IQR) 

[21]. Still, it did not improve the performance of the 

models as relevant data points were regarded as 

outliers and removed. Hence, the detection and 

removal of outliers were based on the distribution of 

the lithology classes over depth for each well log as 

shown in Figure 8. For instance, in the SP and RSHA 

logs, values beyond 150 and 250 were considered 

outliers, respectively. 
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                                       (g) 
Figure 8 Distribution of the lithology classes over depth for 
each well log. (a) CALI; (b) RSHA; (c) RDEP; (d) RHOB; (e) 
GR; (f) DTC; (g) SP 

 

After carrying out exploratory data analysis (EDA), 

features selection, and outliers’ removal, the final 

data used for the study contained 4,329 samples, 7 

well logs, and 7 lithology classes. Table 1 shows the 

summary statistics of the cleaned data used in the 

study for both model training and evaluation. 
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Table 1 Summary statistics of well logs in the cleaned data 

 
Methods 

This work was carried out using Google 

Colaboratory cloud resources with a CPU, 12 

Gigabytes of RAM, and 2 CPU cores for training, and 

evaluation. The models in this work were built using 

Python programming language and pre-built libraries 

such as Numpy, Pandas, Matplotlib, Seaborn, and 

Scikit-learn. 

 
Random Forest (RF) 

The Random Forest algorithm is an ensemble 

learning technique that enhances accuracy and 

minimizes overfitting by aggregating predictions from 

multiple decision trees. As shown in Figure 9, Random 

Forest operates by building a collection of decision 

trees, each trained on a randomly selected subset of 

the training data and features. This randomness 

ensures that each tree captures unique patterns in the 

data. During the training of each decision tree, only a 

subset of features is used to determine splits at each 

node, reducing correlations between trees and 

fostering diversity in predictions. This approach, 

called bagging (bootstrap aggregating), leverages the 

concept that averaging the outputs of diverse models 

results in more robust and generalizable predictions 

[22]. 

 

 

 

 

 

Figure 9 Schematic Diagram of Random Forest Classifier 
[23] 

 

Once all the trees are trained, the Random Forest 

predicts by combining the out-puts of the individual 

trees. For classification tasks, it employs majority 

voting, where each tree votes for a class label, and the 

class with the most votes becomes the final 

prediction. For regression tasks, it calculates the 

average of the predictions from all the trees. This 

ensemble method lowers the risk of overfitting, as the  

 

 

final decision is based on multiple diverse models 

rather than a single complex tree. Random Forests are 

versatile and perform well across various tasks, 

demonstrating resilience to outliers and noisy data 

[24], making them a popular choice in machine 

learning for both classification and regression 

problems [25]. In this study, RF was designed to 

handle the class imbalance by assigning weights to 

each class based on the reciprocal of class frequencies 

in the training data, leading to the formation of a 

weighted class RF (WCRF) [26]. In another approach, 

RF was trained using a balanced data created with 

SMOTE leading to the formation of RF-SMOTE. 

 
Extreme Gradient Boosting (XGBoost) 

The XGBoost (Extreme Gradient Boosting) 

algorithm is an advanced implementation of gradient 

boosting that is highly efficient and optimized for 

speed and performance. As shown in Figure 10, It 

works by creating an ensemble of decision trees 

sequentially, where each new tree aims to correct 

errors made by the previous trees. It uses a 

regularized objective function that balances model 

complexity and accuracy, helping to avoid overfitting, 

and supports both L1 and L2 regularization [27,28]. A 

unique feature of XGBoost is its ability to perform 

gradient boosting with an optimized tree-growing 

technique called exact greedy algorithm, which makes 

the splitting of data points more precise and efficient 

[29]. XGBoost also includes features such as shrinkage 

(a learning rate that moderates the addition of new 

trees), column subsampling (selecting a subset of 

features to construct each tree, similar to Random 

Forests), and parallel processing, which enhances 

both the speed and accuracy of training [27]. These 

techniques allow XGBoost to efficiently process large 

datasets with exceptional performance, making it a 

widely favored algorithm in machine learning for both 

classification and regression tasks [30]. 

 

 

 

 

 

 

 

 

 

Well Logs Mean Min Q1 Median Q3 Max 

CALI 17.835340 10.424725 16.316009 17.908951 19.214706 24.967262 

RSHA 1.563277 0.135231 0.787387 0.910921 1.139654 243.076035 

RDEP 0.967922 0.401266 0.661833 0.877946 1.134758 7.773187 

RHOB 1.962430 1.179810 1.893999 1.991170 2.087290 2.716326 

GR 42.057914 12.119803 24.796065 35.961948 49.410852 138.245102 

DTC 145.624878 45.839245 139.869774 148.311600 154.382927 197.798416 

SP 47.953064 2.490359 20.529184 49.375645 60.270714 122.954636 



Journal of Petroleum and Mining Engineering 27(1)2025                                                                                                          DOI: 10.21608/jpme.2025.344501.1221 
 

Page|44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10  XGBoost Architecture [31] 

 

XGBoost and Random Forest are both ensemble 

learning methods, but they differ in how they 

combine trees to generate predictions. XGBoost 

employs boosting, where trees are built sequentially, 

with each tree correcting the errors of the previous 

one. This approach focuses on challenging examples, 

making XGBoost highly accurate but susceptible to 

overfitting without proper tuning. In contrast, 

Random Forest uses bagging (bootstrap aggregating), 

where multiple trees are built independently and in 

parallel on random subsets of data and features. It 

then averages the predictions from all trees, reducing 

variance and improving robustness. XGBoost also 

integrates regularization and optimization techniques 

to enhance accuracy and speed, while Random Forest 

relies more on randomness to ensure diversity among 

trees. These distinctions make XGBoost better suited 

for tasks that demand high precision, while Random 

Forest is generally simpler and less prone to 

overfitting. 

 
Voting Classifier 

A voting classifier is an ensemble learning method 

that combines the predictions from several individual 

models to enhance classification performance [32] as 

shown in Figure 11. The core concept is that each 

model generates its own prediction for a given input, 

and the voting classifier combines these predictions to 

make a final decision. There are two primary types of 

voting: majority voting (hard voting) and weighted 

voting (soft voting). In majority voting, each model 

votes for a class, and the class with the most votes 

becomes the final prediction. In weighted voting, the 

classifier considers the probability estimates from 

each model, assigning weights based on model 

confidence or performance, and then selects the class 

with the highest average probability. This method 

harnesses the strengths of each model, enabling the 

ensemble to produce more accurate and robust 

predictions than any individual model [33-35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 An example of a voting classifier architecture 
[36]. 

 
Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE employs a more advanced technique for 

oversampling by generating entirely new synthetic 

data points for the minority class. It identifies the k-

nearest neighbors (similar data points) for each 

sample in the minority class, then randomly selects 

one of these neighbors and creates a new data point 

along the line connecting them in feature space [37]. 

The new point retains characteristics of the original 

minority class sample but with slight differences, 

which helps introduce more variation and prevent 

overfitting. This process contributes to a more 

balanced dataset by augmenting the minority class 

with synthetic samples that are similar to existing 

ones, yet include some variation. This can enhance the 

performance of classification algorithms by offering a 

more balanced training dataset [38-40]. 

 
Bayesian Optimization 

Bayesian optimization is an effective method for 

optimizing objective functions that are costly to 

evaluate. It probabilistically models the objective 

function, often using a Gaussian process (GP) as a 

surrogate model to approximate the actual function 

[41,42]. Based on prior evaluations of the function, 

the Gaussian process creates a probability distribution 

over potential functions that fit the observed data, 

enabling predictions for unobserved points. Bayesian 

optimization iteratively chooses the most promising 

points to evaluate next by balancing exploration 

(searching uncertain areas) and exploitation (focusing 

on areas with high estimated values) [43]. 

Bayesian optimization is especially beneficial 

when function evaluations are ex-pensive, such as in 

hyperparameter tuning for machine learning models. 

Unlike other search algorithms like grid search or 

random search, Bayesian optimization is more 

efficient because it learns from prior evaluations and 

minimizes the number of function evaluations needed 

[44]. It also outperforms gradient-based methods 

when the objective function is non-differentiable, 

discontinuous, or noisy. Moreover, by incorporating 

uncertainty into its surrogate model, Bayesian 

optimization effectively balances exploration and 

exploitation, making it particularly well-suited for 
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black-box optimization where the function’s analytical 

form is unknown [45,46]. 
Data Normalization and Partitioning 

The data contained features on vastly different 

scales, which can significantly impact machine 

learning models. Data Normalization was 

implemented to address this issue by transforming 

the data into a consistent range to ensure that all the 

features contributed equally to the model training 

[47]. This study employed the Min-Max Scaler 

technique, scaling all features between 0 and 1. This 

technique proved more effective than the Robust 

Scaler and Standard Scaler techniques. The data was 

then partitioned into two datasets for training and 

testing using 80% by 20% stratified split for an 

improved sampling of the general data [48,49]. The 

models were trained using the training data set and 

then evaluated using the testing dataset.  

 

Performance Metrics 

The performance of the models was evaluated 

using the F1 score, area under the receiver operating 

characteristic curve (AUC), and confusion matrix. The 

F1 score provides a balanced measure of both 

precision and recall, serving as the harmonic mean of 

these two metrics to offer a single value for overall 

model effectiveness. Precision assesses the accuracy 

of the model's positive predictions, calculated by 

dividing the number of correctly identified positive 

cases (True Positives) by the total number of 

predicted positive cases (True Positives + False 

Positives). Recall evaluates the model's ability to 

correctly identify actual positive cases, calculated as 

the ratio of correctly identified positives (True 

Positives) to the total number of actual positives (True 

Positives + False Negatives) [50,51]. The metrics are 

mathematically expressed as seen below; 

 

Precision = TP / (TP + FP)  

 

Recall = TP / (TP + FN) 

 

F1 Score = 2[(Precision * Recall) /  

                        (Precision + Recall)] 

 

Where TP, FP, and FN are the True Positives, False 

Positives and False Negatives respectively.  

 

Area under the receiver operating curve (AUC) is a 

metric used to evaluate the performance of a binary 

or multi-class classification model. It represents the 

area un-der the Receiver Operating Characteristic 

(ROC) curve, which plots the True Positive Rate (TPR) 

(recall) against the False Positive Rate (FPR) across 

various threshold set-tings for the classifier [52]. FPR 

measures the proportion of actual negatives that are 

incorrectly classified as positive by the model. The TPR 

and FPR can be calculated as; 

 

TPR = Recall = TP / (TP + FN)  

 

 

FPR = FP / (FP + TN)  

 

Where TN is True Negative, the number of correctly 

predicted negative cases. 

The AUC score ranges from 0 to 1. AUC = 1.0 

indicates a perfect model that correctly classifies all 

positive and negative cases with no overlap. AUC = 0.5 

represents a model that performs no better than 

random guessing, essentially following the diagonal 

line on the ROC plot. 0.5 < AUC < 1.0 reflects the 

model's ability to balance TPR and FPR effectively, 

with higher values showing stronger predictive 

accuracy [50,51]. This metric is particularly beneficial 

when the classes are imbalanced, as it evaluates the 

model's performance across all classification 

thresholds rather than a single accuracy score. 

 

Results 

This section presents the results obtained from 

the machine learning algorithms dis-cussed in this 

study for lithology classification. First, the results of 

SMOTE are presented. Next, the outcomes of the 

XGBoost model tuning using Bayesian optimization 

are discussed. Finally, the performance of the 

machine learning models is evaluated using 

classification metrics, including F1 Score, area under 

the receiver operating characteristic curve (AUC), and 

the Confusion Matrix. 

 

Handling Imbalanced Class  

RF was designed to handle class imbalance by 

assigning weights to each class based on the 

reciprocal of class frequencies in the training data. In 

another approach, RF, alongside XGBoost-BO, was 

trained using a balanced data created using SMOTE. 

Only the training dataset (the testing dataset not 

included) was balanced using SMOTE. This allowed 

the model to learn from a balanced representation of 

classes while being evaluated on data that reflects the 

actual class distribution. Figure 12 shows the class 

distribution in the balanced training dataset and the 

imbalanced testing dataset. 
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                                     (b) 
Figure 12 Lithology class distribution, where 0=Sandstone, 
1=Sandstone/Shale, 2=Shale, 3=Limestone, 4=Tuff, 
5=Dolomite, 6=Clay. (a) Balanced (SMOTE) training 
dataset; (b) imbalanced testing dataset. 

 

Hyperparameter tuning  

Table 2 presents the optimal hyperparameter 

settings tuned for the XGBoost model. The objective 

function was accuracy, and the number of iterations 

was set to 200. The number of boosted trees was 

randomly chosen in the interval [10, 1000]. The 

maximum depth of the tree was randomly chosen in 

the interval [1, 20]. The boosting learning rate was 

chosen from a uniform distribution ranging from 0.01 

to 0.5. The subsample ratio was randomly chosen in 

the interval [0.1, 1]. The min child weight was 

randomly chosen in the interval [1, 5]. The gamma was 

randomly chosen in the interval [0.1, 0.5]. The 

colsample by tree was randomly chosen in the interval 

[0.5, 1]. The L2 regularization was randomly chosen in 

the interval [0.001, 0.01]. 

 

Model Evaluation 

This study focused on the F1 Score for each 

lithology class instead of the precision and recall 

because F1 Score provides a balanced view of both 

Precision and Recall. Higher F1 Scores mean better 

classification accuracy, precision, and recall for that 

class. Table 3 shows the F1 scores and AUC values 

obtained from RF-SMOTE, WCRF, and XGBoost-BO. 

Figure 13 shows the ROC curves for each model, 

displaying the generalization performance of the 

models on the testing dataset. 
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                                     (b) 
Figure 13 ROC curves of the models, where 0=Sandstone, 
1=Sandstone/Shale, 2=Shale, 3=Limestone, 4=Tuff, 
5=Dolomite, 6=Clay. (a) WCRF; (b) XGBoost-BO. 

 

The average F1 Score and AUC indicate that all 

models performed well, with RF-SMOTE achieving an 

average AUC of 0.983, WCRF - 0.982, and XGBoost-BO 

- 0.985, suggesting a high overall classification 

capability. However, differences arise in handling 

specific lithologies, especially minority classes like 

tuff, dolomite, and clay. In terms of the minority 

classes, WCRF and XGBoost-BO show relatively high 

F1 Scores (for instance, tuff: 0.864 for WCRF and 0.866 

for XGBoost-BO), indicating these models manage 

imbalanced data effectively. WCRF's use of class 

weights helped boost performance on these classes, 

as seen in dolomite, where it achieved a notable F1 

Score of 0.871 compared to RF-SMOTE's 0.800. 

XGBoost-BO also performed robustly, leveraging 

optimized hyperparameters to improve 

generalization, as shown by its high AUCs for each 

class. These results are significant for lithology 

classification as they demonstrate that both WCRF 

and XGBoost-BO can handle imbalanced data well, 

improving classification for underrepresented 

lithologies.  

Combining WCRF and XGBoost-BO in a voting 

classifier leverages the strengths of both models, 

creating a more robust classifier for lithology 

classification. WCRF’s weighted class approach allows 

it to handle imbalanced data effectively by giving 

more emphasis to minority classes such as tuff, 

dolomite, and clay, which are underrepresented in the 

dataset. This weighting mechanism helps WCRF boost 

its performance on less frequent lithologies, providing 

a balanced view of different rock types. Meanwhile, 

XGBoost-BO, optimized through Bayesian methods, 

brings strong predictive power and flexibility, with the 

ability to handle complex relationships in well log data 

due to its boosting nature and fine-tuned 

hyperparameters.  

By combining these models in a voting classifier, 

the system benefits from WCRF's ability to account for 

class imbalance alongside XGBoost's high accuracy 

and generalization capabilities. This method enhances 
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the overall classification accuracy, ensuring that the 

classifier is not biased toward majority classes while 

still maintaining high precision across all lithologies. 

The combined classifier effectively captures diverse 

patterns and improves robustness, making it highly 

relevant for geological applications where accurate 

classification of all lithologies, including rare ones, is 

crucial for decision-making in exploration and drilling 

activities. Table 4 shows the F1 scores of the voting 

classifier (both hard and soft) with different weights 

adjustments. 

 
Table 2 Tuned hyperparameters for the XGBoost model 

 
Table 3 Performance results of the machine learning 
models for lithology classification 

 

 
Table 4 Performance of the voting classifier (WCRF and 
XGBoost-BO) with weight adjustments 

 

Table 4 reveals that the voting classifiers generally 

yield higher average F1-Scores, suggesting improved 

performance through ensemble learning. Each 

column represents a different weighting of WCRF and 

XGBoost-BO in the voting classifier. For instance, [1,1] 

uses equal weight for both models, while [2,1] and 

[1,2] give different weights to the models. Across 

configurations, soft voting generally outperforms 

hard voting, with the highest average F1-Score of 

0.879 observed in the [1,1] soft voting con-figuration. 

Examining minority classes—Tuff, Dolomite, and 

Clay—the voting classifiers exhibit enhanced 

performance compared to the base models. Tuff and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dolomite benefit from the ensemble approach, 

showing F1-Scores as high as 0.889 and 0.885, 

respectively, under the [1,1] soft voting. This 

improvement in minority class recognition is crucial 

for geological accuracy, as these classes are less 

frequently encountered but hold importance in 

lithology classification. Furthermore, Clay consistently 

achieves high F1-Scores (e.g., 0.945 in [1,1] soft 

voting), reflecting the ensemble’s strong ability to 

identify this minority class. The [1,1] soft voting 

classifier improves the F1-Score by approximately 

Hyperparameter Symbol Search Range Optimum Value 

Number of boosted trees n_estimators 10-1000 1000 

Maximum depth of a tree max_depth 1-20 20 

Boosting learning rate learning_rate 0.01-0.5 0.01 

Subsample ratio of the training instances subsample 0.1-1 0.791 

Min Child weight min_child_weight 1-5 1 
Gamma gamma 0.1-0.5 0.1 

Colsample by tree colsample_bytree 0.5-1 1 

L2 regularization term on weights reg_alpha 0.001-0.01 0.001 

 RF-SMOTE WCRF XGBoost-BO 

Class F1 Score AUC F1 Score AUC F1 Score AUC 
Sandstone 0.929 0.990 0.929 0.992 0.919 0.990 

Sandstone/Shale 0.837 0.966 0.848 0.962 0.838 0.969 

Shale 0.811 0.964 0.823 0.967 0.803 0.965 

Limestone 0.836 0.970 0.814 0.969 0.832 0.977 

Tuff 0.853 0.998 0.864 0.998 0.866 0.998 

Dolomite 0.800 0.993 0.871 0.990 0.847 0.995 

Clay 
Avg 

0.926 
0.856 

0.999 
0.983 

0.911 
0.866 

0.999 
0.982 

0.925 
0.861 

0.998 
0.985 

 Voting Classifier [1,1] Voting Classifier [2,1] Voting Classifier [1,2] 

Class F1 Score  
(Hard) 

F1 Score 
(Soft) 

F1 Score 
(Hard) 

F1 Score 
(Soft) 

F1 Score  
(Hard) 

F1 Score 
(Soft) 

Sandstone 0.923 0.927 0.929 0.929 0.921 0.927 

Sandstone/Shale 0.834 0.841 0.849 0.843 0.830 0.839 

Shale 0.820 0.835 0.824 0.833 0.824 0.832 
Limestone 0.817 0.831 0.815 0.819 0.822 0.831 

Tuff 0.893 0.889 0.864 0.880 0.894 0.887 

Dolomite 0.878 0.885 0.871 0.885 0.893 0.885 

Clay 
Avg 

0.921 
0.869 

0.945 
0.879 

0.911 
0.866 

0.933 
0.875 

0.935 
0.874 

0.945 
0.878 
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1.5% compared to WCRF and 2.1% compared to 

XGBoost-BO. 

 

 

 

 

 

 

 

 

 

 
 

Figure 14 Confusion matrix of [1,1] soft voting classifier, 
where 0=Sandstone, 1=Sandstone/Shale, 2=Shale, 
3=Limestone, 4=Tuff, 5=Dolomite, 6=Clay.  

Figure 14 shows that there is notable confusion 

among closely related lithologies, especially between 

Sandstone and Sandstone/Shale, Shale and 

Limestone, and Lime-stone and Tuff. This confusion 

may stem from overlapping physical or chemical 

properties that make these classes harder to 

distinguish. The [1,1] soft voting approach improves 

overall classification by balancing the individual 

strengths of its component models, which is especially 

beneficial for minority classes like Tuff and Clay. This 

improvement indicates that the ensemble method 

marginally but effectively enhances model 

performance. 

Conclusions 

This study introduced an ensemble approach 

combining Weighted Class Random Forest (WCRF) 

and Bayesian Optimized Extreme Gradient Boosting 

(XGBoost-BO) to enhance lithology classification from 

well log data. Individually, the WCRF model achieved 

an average AUC of 0.982 and an F1-Score of 0.866, 

while XGBoost-BO attained a slightly higher AUC of 

0.985 and an F1-Score of 0.861. By combining WCRF 

and XGBoost-BO in a voting classifier, we were able to 

leverage the strengths of both models, creating a 

more robust classifier for lithology classification. The 

[1,1] soft voting configuration in the ensemble model 

improved the F1-Score by approximately 1.5% over 

WCRF and 2.1% over XGBoost-BO, confirming the 

effectiveness of this ensemble approach. 

This method provides a robust, efficient solution 

for subsurface lithology classification, enhancing 

accuracy across diverse rock types. The improved 

prediction accuracy, especially for underrepresented 

classes, can lead to better-informed decisions in 

drilling and resource assessment, reducing 

exploration costs and risks. These findings underscore 

the value of ensemble machine learning models in the 

petroleum industry for reliable lithology classification. 
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