Joint Addition of Zirconium, Titanium and Chromium to Commercial Pure Aluminium

Document Type : Original Article

Authors

1 Mining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Assiut

2 Nuclear Materials Authority- Egypt

Abstract

The effect of joint addition of Zr, Ti and Cr on the grain refinement of commercial pure aluminium (99.7% Al) has been investigated by optical microscopy and scanning electron microscopy (SEM) as well as Energy Dispersive X-ray Spectroscopy (EDS). It was found that joint addition of 0.15 wt% Zr and 0.025 wt% Ti to Al can result in a remarkable refinement with an average grain size of 102 μm. It was found the optimum addition level of Ti to be 0.025 wt% in the presence of 0.1 % Zr and any increase in the Ti beyond 0.025wt% results in coarse grain size. Joint additions of 0.15 wt% Zr, 0.025 wt% Ti and 0.15 wt% Cr to Al facilitate better grain refinement and the average grain size was 75 μm. The grain refining performance of joint addition of 0.1 wt.% Zr and different additions of either Ti or Cr is higher than refining with zirconium alone. EDS and SEM analysis of the precipitated phases observed at or near the centers of the refined aluminium with joint addition of Zr and Ti was found to be Al3(Zr1-xTix). These Al3(Zr1-xTix) particles act as heterogeneous nucleation sites for α-Al during solidification and resulted in better grain refinement.

Keywords

Main Subjects